首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   261篇
  免费   88篇
  国内免费   57篇
航空   363篇
航天技术   15篇
综合类   21篇
航天   7篇
  2024年   2篇
  2023年   1篇
  2022年   17篇
  2021年   14篇
  2020年   15篇
  2019年   14篇
  2018年   11篇
  2017年   11篇
  2016年   14篇
  2015年   10篇
  2014年   15篇
  2013年   20篇
  2012年   18篇
  2011年   20篇
  2010年   30篇
  2009年   17篇
  2008年   25篇
  2007年   19篇
  2006年   13篇
  2005年   11篇
  2004年   18篇
  2003年   12篇
  2002年   19篇
  2001年   13篇
  2000年   8篇
  1999年   4篇
  1998年   2篇
  1997年   7篇
  1996年   4篇
  1995年   1篇
  1994年   5篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1989年   4篇
  1986年   1篇
排序方式: 共有406条查询结果,搜索用时 125 毫秒
171.
无源微脉冲射流抑制叶栅气流分离的初步实验   总被引:1,自引:1,他引:0  
基于一种适用于高负荷压气机的无源微脉冲射流控制技术,在平面叶栅实验平台上开展了低马赫数实验研究,得到了无流动控制时叶栅通道内稳态及动态压力特性.对该分离流场(通道内分离涡主频为478Hz,对应的斯特劳哈尔数Sr约为0.2)进行了无源微脉冲射流控制通道内气流分离的实验研究,并针对148Hz到840Hz频率范围内的无源微脉冲射流控制分离流的效果进行了实验测量分析.实验结果表明:在分离涡主频0.85~1.20频率范围内,控制效果最为明显;相比于开缝吹气等定常射流控制方式,无源微脉冲射流控制方式引气流量小,大幅降低了引气对压力面流动特征及叶栅总体性能的影响.   相似文献   
172.
采用DMD方法研究叶栅不同攻角的拟序结构   总被引:1,自引:1,他引:0  
为分析平面叶栅分离流非定常拟序流动特征,对三个不同攻角下的叶栅进行了单通道的大涡模拟仿真,并采用动力模态分解(DMD)三个工况的流场结构进行了分析。DMD方法对包含复杂时空信息的叶栅分离流流场进行了解耦,剥离出了反映流场主要动力信息的模态,获得了其频率和与之对应的空间结构。并且通过DMD方法,将原本需要研究大量不同时刻的流场,转移到仅需要对少量模态的研究即可,实现了保留主要动力特征的低维近似。通过DMD分析表明:气流经过叶片前缘产生流动分离,形成不稳定的剪切涡结构,它和尾迹区脱落涡相互耦合,并形成新的拟序结构。随着攻角的增大,前缘剪切涡及其与尾迹涡的耦合也同时增强,流场变得更加复杂。   相似文献   
173.
高速压气机叶栅旋涡结构及其流动损失研究   总被引:5,自引:0,他引:5  
为揭示高亚声速来流条件下压气机叶栅内部流动特性,对高速压气机叶栅通道内旋涡结构和流动损失的产生与演变规律进行研究。首先建立了数值仿真模型并用实验验证,然后详细研究了叶栅通道内主要旋涡结构、拓扑规律和旋涡模型,最后分析了叶栅通道内流动损失与旋涡结构的内在联系。高速压气机叶栅通道内主要存在马蹄涡、端壁展向涡、通道涡、壁角涡、壁面涡、集中脱落涡和尾缘脱落涡7个集中涡系,通道涡由端壁来流附面层中发展而来,是角区复杂旋涡结构的主要诱因;攻角由0°增大为4°,通道涡的涡核更早地脱落端壁附面层向角区发展,但对角区流动的影响减弱,叶片尾缘未形成明显的集中脱落涡。伴随着集中脱落涡的消失,叶栅固壁面拓扑结构中,叶片尾缘吸力面上没有出现与集中脱落涡对应的分离螺旋点,并且与叶中脱落涡层相对应的分离线和再附线消失,尾缘脱落涡仅包含近端区的一个分支。由总压损失沿流向和展向的变化规律,叶栅通道流动损失主要来源于角区复杂旋涡结构引起的强剪切作用,近端壁区的总压损失与角区主要涡系结构的生成和发展密切相关;攻角由0°增大至4°,角区旋涡的影响能力变弱,近端区流动损失减小,与叶中部位总压损失的差异缩小。  相似文献   
174.
利用N-S方程求解程序,对采用不同端壁结构的三套大转角涡轮叶栅进行了数值模拟,探讨了上端壁翘曲对涡轮叶栅内气流流动的影响。计算结果表明,上端壁翘曲后,上半翼殿内的二次流流场发生了明显的变化,非轴对称端壁是控制叶栅内二次流流动的一种有效的方法。  相似文献   
175.
多级轴流风扇/压气机非设计点性能计算方法   总被引:3,自引:2,他引:1       下载免费PDF全文
赵勇  胡骏  屠宝锋  王志强 《推进技术》2008,29(2):219-224
为更好反映现代轴流风扇内部流动特征,将适合于高马赫数来流的双激波模型引入基元叶栅法,发展了一种多级轴流风扇、压气机非设计点性能计算方法。该方法通过引入雷诺数修正,考虑了雷诺数对风扇/压气机性能的影响,并使最大静压升系数法可在宽广雷诺数变化范围内预测风扇/压气机稳定边界。该方法灵活、可靠,并经过高压压气机、跨声速风扇及大涵道比风扇/增压级等典型的压气机试验结果验证,既可用于多级轴流风扇/压气机非设计点性能计算,又可发展成为高空低雷诺数条件下高性能风扇/压气机设计和研究的重要工具,有着广泛的工程应用前景。  相似文献   
176.
带吸力面小翼的压气机叶栅变间隙特性实验   总被引:1,自引:0,他引:1  
为了进一步揭示吸力面小翼在不同叶尖间隙条件下的影响机理,开展了有/无吸力面小翼的压气机叶栅变间隙特性实验.结果表明:与无间隙叶栅相比,叶尖相对间隙为1%时引入的泄漏流可以有效抑制叶片吸力面/端壁角区三维分离的产生,叶栅总损失和气动堵塞程度最低,此时为研究的4种间隙工况中的最佳间隙工况.吸力面小翼在此间隙下降低了泄漏涡强度的同时使通道涡增强,叶片吸力面重新出现了三维分离流动,叶栅总损失和堵塞程度均有所增加.在叶尖相对间隙为2%和3%时,带吸力面小翼叶栅中叶尖分离涡增强,主导叶尖区流动的泄漏涡强度减弱,两种间隙下叶栅总损失系数分别降低了8.9%和12.5%,堵塞系数分别降低了6.9%和6.3%.在研究的3种非零间隙条件下吸力面小翼降低了叶栅气动损失对叶尖间隙变化的敏感性,减弱了叶尖泄漏涡造成的叶栅出口气流角的欠偏转/过偏转程度.   相似文献   
177.
间隙变化对压气机静叶叶栅气动性能的影响   总被引:1,自引:0,他引:1  
王子楠  耿少娟  张宏武 《航空学报》2016,37(11):3304-3316
利用压气机平面叶栅试验,在大负攻角工况、设计工况和角区失速工况下,研究间隙变化对叶栅气动性能的影响,并分析内部流动变化与气动性能变化的关联。试验结果表明,不同工况下间隙变化对流场结构的影响不同,因而对叶栅性能的影响规律也不同。大负攻角工况下,不同间隙叶栅内在压力面前缘附近都存在一对由端壁向叶展中部发展的分离涡,间隙增大可以使叶栅总损失近似线性减小,并使间隙侧气流折转能力略微提升。设计工况下,无间隙侧吸力面角区存在轻微的角区分离,小间隙(0.2%展长)的引入首先会加剧间隙侧角区分离,当间隙进一步增大时,角区分离消失并形成泄漏涡结构。叶栅总损失随间隙增大呈先增大后减小再增加的趋势,角区分离的消除有助于提高间隙侧气流折转能力。角区失速工况下,间隙的引入可以削弱并移除间隙侧角区失速结构,从而使叶栅总损失下降,并在0.5%展长间隙时达到最小值,同时间隙侧气流折转能力得到增强。当间隙进一步增大时,叶栅损失变化不大。在间隙变化过程中,两侧端部流动结构产生相互影响,使两侧流场性能变化呈相反趋势。通过对比全工况范围内的气动性能,叶栅在选取0.5%展长间隙时整体性能最优。  相似文献   
178.
通过给定各块格栅上气流的折流角,反推力格栅出流模式描述了反推气流方向沿发房周向的分布。出流模式的定义需要考虑使反推系统满足反推效率,重吸入特性和有效面积方面的要求,还应使反推气流对机体气动特性的影响最小化。格栅出流模式设计是否满足反推效率和有效面积的要求,可由单独反推系统的静态试验来进行验证,而重吸入特性和发动机/飞机气动干扰则必须通过全机反推力风洞试验来进行考察。  相似文献   
179.
压力面小翼对涡轮叶栅不同间隙下流场影响的实验   总被引:3,自引:0,他引:3  
对某涡轮叶栅加装不同宽度的压力面小翼对叶栅间隙流场的影响进行了实验研究,详细测量了间隙高度为0.5%h,1%h,1.5%h时叶栅出口流场和叶片表面静压分布情况.通过实验结果分析得出:随着间隙高度的增加,间隙泄漏流动加剧,泄漏涡增强,叶栅总损失增加,同时使上通道涡的强度减弱;压力面小翼在间隙高度为0.5%h时对间隙泄漏流动的控制效果较好,宽度为0.4倍当地叶片厚度的压力面小翼能使叶栅总损失降低18%.间隙高度为1%h时,0.3倍当地叶片厚度的压力面小翼效果最佳,使叶栅总损失降低10.37%.间隙高度为1.5%h时,压力面小翼对间隙泄漏流动基本没有影响,但在一定程度上降低了叶栅总损失.   相似文献   
180.
高空低雷诺数吸附式压气机叶型耦合优化设计   总被引:1,自引:2,他引:1  
为了探究高空低雷诺数条件下吸附式叶型的气动设计特性,利用人工蜂群算法对低雷诺数吸附式叶型进行优化设计,该设计方法可以将叶型和抽吸方案进行耦合优化.并且对高空低雷诺数吸附式叶型耦合优化设计的必要性进行了论证.研究结果表明:在地面条件下设计的具有较好性能的吸附式叶型,在高空低雷诺数条件下,性能有可能会显著下降,针对高空低雷诺数条件的吸附式叶型设计有很大必要性;针对研究对象,在高空低雷诺数条件下优化设计后总压损失降低了32%,静压升提高了0.01,并且优化设计后在地面条件下的性能也略有提升;在高空低雷诺数条件下,适当地增加吸附式叶型前段的负荷,通过抽吸来控制层流分离泡的设计效果最为理想;优化后得到的最佳抽吸位置位于层流分离泡中心区域.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号