首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1055篇
  免费   68篇
  国内免费   18篇
航空   114篇
航天技术   895篇
综合类   5篇
航天   127篇
  2023年   30篇
  2022年   9篇
  2021年   58篇
  2020年   31篇
  2019年   34篇
  2018年   38篇
  2017年   8篇
  2016年   8篇
  2015年   12篇
  2014年   74篇
  2013年   59篇
  2012年   56篇
  2011年   82篇
  2010年   67篇
  2009年   88篇
  2008年   90篇
  2007年   49篇
  2006年   24篇
  2005年   70篇
  2004年   25篇
  2003年   10篇
  2002年   18篇
  2001年   18篇
  2000年   19篇
  1999年   13篇
  1998年   24篇
  1997年   23篇
  1996年   10篇
  1995年   13篇
  1994年   28篇
  1993年   11篇
  1992年   17篇
  1991年   10篇
  1990年   9篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
排序方式: 共有1141条查询结果,搜索用时 31 毫秒
191.
The Wind   spacecraft’s Faraday cups (FC) continue to produce high-quality, in situ observations of thermal protons (i.e., ionized hydrogen) and αα-particles (i.e., fully ionized helium) in the solar wind. By fitting a Wind/FC ion spectrum with a model velocity distribution function (VDF) for each particle species, values for density, bulk velocity, and temperature can be inferred. Incorporating measurements of the background magnetic field from the Wind Magnetic Field Investigation (MFI) allows perpendicular and parallel temperature components to be separated. Prior implementations of this analysis averaged the higher-cadence Wind/MFI measurements to match that of the Wind/FC ion spectra. However, this article summarizes recent and extensive revisions to the analysis software that, among other things, eliminate such averaging and thereby account for variations in the direction of the magnetic field over the time taken to measure the ions. A statistical comparison reveals that the old version consistently underestimates the temperature anisotropy of ion VDF’s: averaging over fluctuations in the magnetic field essentially blurs the perpendicular and parallel temperature components, which makes the plasma seem artificially more isotropic. The new version not only provides a more accurate dataset of ion parameters (which is well suited to the study of microkinetic phenomena), it also demonstrates a novel technique for jointly processing particle and field data. Such methods are crucial to heliophysics as wave-particle interactions are increasingly seen as playing an important role in the dynamics of the solar wind and similar space plasmas.  相似文献   
192.
This paper examines the concept of a Sun-pointing elliptical Earth ring comprised of dust grains to offset global warming. A new family of non-Keplerian periodic orbits, under the effects of solar radiation pressure and the Earth’s J2 oblateness perturbation, is used to increase the lifetime of the passive cloud of particles and, thus, increase the efficiency of this geoengineering strategy. An analytical model is used to predict the orbit evolution of the dust ring due to solar-radiation pressure and the J2 effect. The attenuation of the solar radiation can then be calculated from the ring model. In comparison to circular orbits, eccentric orbits yield a more stable environment for small grain sizes and therefore achieve higher efficiencies when the orbit decay of the material is considered. Moreover, the novel orbital dynamics experienced by high area-to-mass ratio objects, influenced by solar radiation pressure and the J2 effect, ensure the ring will maintain a permanent heliotropic shape, with dust spending the largest portion of time on the Sun facing side of the orbit. It is envisaged that small dust grains can be released from a circular generator orbit with an initial impulse to enter an eccentric orbit with Sun-facing apogee. Finally, a lowest estimate of 1 × 1012 kg of material is computed as the total mass required to offset the effects of global warming.  相似文献   
193.
The analysis of observations of very high frequency radio noise intensity at the middle latitude on a frequency f = 500 MHz from 14th till 26th of October, 2003 is presented. These data are compared with the solar radio bursts in the range of frequencies 1–14 MHz registered by RAD2 receiver of the WAVES device installed on board the WIND spacecraft.  相似文献   
194.
A new summer temperature proxy was built for northern Fennoscandia in AD 1000–2004 using parameters of tree growth from a large region, extending from the Swedish Scandes to the Kola Peninsula. It was found that century-scale (55–140 year) cyclicity is present in this series during the entire time interval. This periodicity is highly significant and has a bi-modal structure, i.e. it consists of two oscillation modes, 55–100 year and 100–140 year variations. A comparison of the century-long variation in the northern Fennoscandian temperature proxy with the corresponding variations in Wolf numbers and concentration of cosmogenic 10Be in glacial ice shows that a probable cause of this periodicity is the modulation of regional climate by the secular solar cycle of Gleissberg. This is in line with the results obtained previously for a more limited part of the region (Finnish Lapland: 68–70° N, 20–30° E). Thus the reality of a link between long-term changes in solar activity and climate in Fennoscandia has been confirmed. Possible mechanisms of solar influence on the lower troposphere are discussed.  相似文献   
195.
The cosmic ray ground level enhancement on January 20, 2005 is among the largest recorded events in the history of cosmic ray measurements. The solar protons of MeV energies cause an excess of ionization in the atmosphere, specifically over polar caps following major solar disturbances. The ionization effect in the Earth atmosphere is obtained for various latitudes on the basis of solar proton energy spectra, reconstructed from GOES 11 measurements and subsequent full Monte Carlo simulation of cosmic ray induced atmospheric cascade. The estimation of ionization rates is based on a numerical model for cosmic ray induced ionization. The evolution of atmospheric cascade is performed with the CORSIKA 6.52 code using FLUKA 2006b and QGSJET II hadron interaction models. The atmospheric ion rate ionization is explicitly obtained for 40°N, 60°N and 80°N latitudes. The time evolution of obtained ion rates is presented. It is demonstrated that ionization effect is negative for 40°N and small for 60°N, because of accompanying Forbush decrease. The ionization effect is significant only in sub-polar and polar atmosphere during the major ground level enhancement of 20 January 2005.  相似文献   
196.
We consider a special relativistic effect, known as the Poynting–Robertson effect, on various types of trajectories of solar sails. Since this effect occurs at order v?/c, where v? is the transversal speed relative to the sun, it can dominate over other special relativistic effects, which occur at order v2/c2. While solar radiation can be used to propel the solar sail, the absorbed portion of it also gives rise to a drag force in the transversal direction. For escape trajectories, this diminishes the cruising velocity, which can have a cumulative effect on the heliocentric distance. For a solar sail directly facing the sun in a bound orbit, the Poynting–Robertson effect decreases its orbital speed, thereby causing it to slowly spiral towards the sun. We also consider this effect for non-Keplerian orbits in which the solar sail is tilted in the azimuthal direction. While in principle the drag force could be counter-balanced by an extremely small tilt of the solar sail in the polar direction, periodic adjustments are more feasible.  相似文献   
197.
The ability to observe meteorological events in the polar regions of the Earth from satellite celebrated an anniversary, with the launch of TIROS-I in a pseudo-polar orbit on 1 April 1960. Yet, after 50 years, polar orbiting satellites are still the best view of the polar regions of the Earth. The luxuries of geostationary satellite orbit including rapid scan operations, feature tracking, and atmospheric motion vectors (or cloud drift winds), are enjoyed only by the middle and tropical latitudes or perhaps only cover the deep polar regions in the case of satellite derived winds from polar orbit. The prospect of a solar sailing satellite system in an Artificial Lagrange Orbit (ALO, also known as “pole sitters”) offers the opportunity for polar environmental remote sensing, communications, forecasting and space weather monitoring. While there are other orbital possibilities to achieve this goal, an ALO satellite system offers one of the best analogs to the geostationary satellite system for routine polar latitude observations.  相似文献   
198.
辐照不均匀性是太阳模拟器的一项主要技术指标.首先通过对国内外辐照不均匀性测量装置进行了充分的调研,决定采用“决门法”设计完成了辐照不均匀性的测量装置.接着通过试验证明了晴空无遮挡的太阳光可以作为该装置的标准光源并进行了该装置的标定.然后,利用该装置对自然光源进行了测试,结果与利用标准表测试一致.最后,利用该装置对脉冲式太阳模拟器的辐照不均匀性进行了现场测试.  相似文献   
199.
There are two ways of external forcing of the lower ionosphere, the region below an altitude of about 100 km: (1) From above, which is directly or indirectly of solar origin. (2) From below, which is directly or indirectly of atmospheric origin. The external forcing of solar origin consists of two general factors – solar ionizing radiation variability and space weather. The solar ionization variability consist mainly from the 11-year solar cycle, the 27-day solar rotation and solar flares, strong flares being very important phenomenon in the daytime lower ionosphere due to the enormous increase of the solar X-ray flux resulting in temporal terminating of MF and partly LF and HF radio wave propagation due to heavy absorption of radio waves. Monitoring of the sudden ionospheric disturbances (SIDs – effects of solar flares in the lower ionosphere) served in the past as an important tool of monitoring the solar activity and its impacts on the ionosphere. Space weather effects on the lower ionosphere consist of many different but often inter-related phenomena, which govern the lower ionosphere variability at high latitudes, particularly at night. The most important space weather phenomenon for the lower ionosphere is strong geomagnetic storms, which affect substantially both the high- and mid-latitude lower ionosphere. As for forcing from below, it is caused mainly by waves in the neutral atmosphere, i.e. planetary, tidal, gravity and infrasonic waves. The most important and most studied waves are planetary and gravity waves. Another channel of the troposphere coupling to the lower ionosphere is through lightning-related processes leading to sprites, blue jets etc. and their ionospheric counterparts. These phenomena occur on very short time scales. The external forcing of the lower ionosphere has observationally been studied using predominantly ground-based methods exploiting in various ways the radio wave propagation, and by sporadic rocket soundings. All the above phenomena are briefly mentioned and some of them are treated in more detail.  相似文献   
200.
Close to the current solar activity minimum, two large solar cosmic ray ground-level enhancements (GLE) were recorded by the worldwide network of neutron monitors (NM). The enormous GLE on 20 January 2005 is the largest increase observed since the famous GLE in 1956, and the solar cosmic-ray event recorded on 13 December 2006 is among the largest in solar cycle 23. From the recordings of the NMs during the two GLEs, we determined the characteristics of the solar particle flux near Earth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号