全文获取类型
收费全文 | 449篇 |
免费 | 292篇 |
国内免费 | 153篇 |
专业分类
航空 | 512篇 |
航天技术 | 120篇 |
综合类 | 109篇 |
航天 | 153篇 |
出版年
2025年 | 2篇 |
2024年 | 14篇 |
2023年 | 12篇 |
2022年 | 28篇 |
2021年 | 30篇 |
2020年 | 27篇 |
2019年 | 24篇 |
2018年 | 18篇 |
2017年 | 29篇 |
2016年 | 30篇 |
2015年 | 25篇 |
2014年 | 44篇 |
2013年 | 33篇 |
2012年 | 37篇 |
2011年 | 43篇 |
2010年 | 43篇 |
2009年 | 23篇 |
2008年 | 20篇 |
2007年 | 26篇 |
2006年 | 38篇 |
2005年 | 27篇 |
2004年 | 35篇 |
2003年 | 25篇 |
2002年 | 19篇 |
2001年 | 25篇 |
2000年 | 28篇 |
1999年 | 29篇 |
1998年 | 24篇 |
1997年 | 18篇 |
1996年 | 36篇 |
1995年 | 14篇 |
1994年 | 24篇 |
1993年 | 11篇 |
1992年 | 7篇 |
1991年 | 2篇 |
1990年 | 5篇 |
1989年 | 3篇 |
1988年 | 12篇 |
1987年 | 2篇 |
1986年 | 2篇 |
排序方式: 共有894条查询结果,搜索用时 15 毫秒
841.
FATIGUEDISLOCATIONCONFIGURATIONSINHEXAGONALZIRCALOY-4¥XiaoLin(InstituteofEngineeringMech.,Xi'anJiaotongUniversity,Xi'an,China... 相似文献
842.
843.
844.
845.
陶瓷材料由于具有高熔点、高硬度、高耐磨性、耐氧化、良好的绝缘性等优点,使得其在航天领域得到广泛的应用。针对陶瓷材料在常规机械加工过程中易引入微裂纹等非本征缺陷和残余应力等加工缺陷,通过对陶瓷材料特性的理论分析,引入超声振动加工方法。同时,对陶瓷材料超声振动加工的机理进行了分析,对比验证了普通磨削加工和超声辅助铣磨削加工的效果。采用仿真分析了超声加工过程中工件所受的切削压力和内应力云图,并从理论的角度进行了验证,实现了陶瓷材料产品表观质量的大幅提升,其表面粗糙度达到Ra0.56μm。 相似文献
846.
扑翼飞行器的驱动机构是扑翼飞行器的动力装置,决定了扑翼飞行器的整机性能。随着人们对扑翼飞行器性能的要求越来越高,各国研究者们对其驱动机构工作原理的探索也越来越深入,从而使扑翼飞行器驱动机构设计理论与方法研究取得了显著进展。在最近几年里,更是涌现出了许多新型高效的驱动机构。本文对近些年出现的传统纯机械式的驱动机构和基于智能材料的驱动机构的应用现状做了详细的研究与总结,并分析了其特点与发展趋势。介绍了柔性结构在扑翼飞行器领域的应用情况,并分析了其在驱动机构中发挥的作用。 相似文献
847.
对传感光纤在复合材料内的埋置技术进行了详细的实验研究,包括复合材料内光纤埋置工艺与布局原则,光纤内埋置部分在热压时的保护,光纤的引出及引出接头的保护,埋入光纤对材料性能的影响,复合材料内应变与损作的检测灵敏度与光纤阵列矶局的关系等,并成功地将传感光纤埋置入教-11飞机的碳纤维/环氧复合材料垂直尾翼试件内。 相似文献
848.
金属结构损伤复合材料微波修复的实验研究 总被引:6,自引:0,他引:6
研究一种利用微波修复金属结构损伤的新技术,阐明了微波修复机理,探讨了界面形成与快速固化理论。复合材料微波修复通过在修复区注入微波吸收剂提高导电磁率来吸收微波辐射,并将微波能转换为热能,利用特殊设计的微波施加器发射微波可以使热量直接加在修复区而不加热整个结构。本文还提供大量的实验数据,表明微波修复试件的强度高于传统方法修复的试件,微波修复技术适合于现役飞行器在各种环境下的外场快速修复。 相似文献
849.
针对复合材料成型工艺的特点,依据毛细原理,研制了浸润性能测试仪.该测试仪包括浸润质量测试系统与温度控制系统,能够定量测试在较宽的温度范围内发生浸润的速率和浸润程度.对该测试仪的准确性与稳定性进行了校准与标定,并运用该仪器研究了纤维种类、树脂粘度和纤维体积含量对树脂/纤维浸润性能的影响规律.研究结果表明该设备为研究各类复合材料中增强材料与基体间的浸润性能提供了方便的测试手段,对指导复合材料制备工艺具有较高的参考价值. 相似文献
850.
为分析多孔材料对预混气体爆炸特性参数的影响效果,采用自主搭建的爆炸实验平台,探究不同孔隙度和厚度的多孔材料对当量比为1的甲烷/空气预混气体爆炸的作用行为。实验研究表明,不同孔隙度的多孔材料对爆炸火焰和超压具有促进或抑制两种不同的影响。孔隙度较小时,爆燃火焰传播速度随着材料厚度的增大而降低,并在厚度较大时,火焰有短暂的传播延时现象。孔隙度较大时,预混火焰冲击多孔材料时发生淬熄,但随后一段时间内,由于负压抽吸作用,在已爆区域一侧的材料表面产生扩散燃烧现象,且扩散燃烧程度与材料厚度成反比关系。多孔材料的固相结构能降低压力的泄放效率,同时可吸收能量,进而提高爆炸超压的上升速率,降低超压峰值。当每英寸长度孔数δ=10的多孔材料促进火焰传播时,与当量比为1的预混气体爆炸相比,超压峰值最大可提高约2倍,造成更严重的后果。火焰冲击δ=20的多孔材料时发生淬熄,最大超压衰减可达47.17%,δ=30时最大超压衰减了24.62%。 相似文献