全文获取类型
收费全文 | 2145篇 |
免费 | 1094篇 |
国内免费 | 438篇 |
专业分类
航空 | 2330篇 |
航天技术 | 520篇 |
综合类 | 510篇 |
航天 | 317篇 |
出版年
2025年 | 23篇 |
2024年 | 103篇 |
2023年 | 123篇 |
2022年 | 152篇 |
2021年 | 130篇 |
2020年 | 127篇 |
2019年 | 126篇 |
2018年 | 136篇 |
2017年 | 144篇 |
2016年 | 131篇 |
2015年 | 126篇 |
2014年 | 143篇 |
2013年 | 147篇 |
2012年 | 153篇 |
2011年 | 176篇 |
2010年 | 130篇 |
2009年 | 157篇 |
2008年 | 135篇 |
2007年 | 126篇 |
2006年 | 113篇 |
2005年 | 110篇 |
2004年 | 75篇 |
2003年 | 84篇 |
2002年 | 71篇 |
2001年 | 58篇 |
2000年 | 56篇 |
1999年 | 73篇 |
1998年 | 57篇 |
1997年 | 49篇 |
1996年 | 72篇 |
1995年 | 52篇 |
1994年 | 60篇 |
1993年 | 59篇 |
1992年 | 55篇 |
1991年 | 43篇 |
1990年 | 45篇 |
1989年 | 28篇 |
1988年 | 25篇 |
1987年 | 2篇 |
1986年 | 2篇 |
排序方式: 共有3677条查询结果,搜索用时 0 毫秒
41.
在高速磁浮列车通过隧道过程中,受隧道内壁面和车体表面形成的环状空间限制,列车头部前方气流受到压缩,在隧道入口形成初始压缩波。初始压缩波在隧道内以当地声速传播至隧道另一端出口,部分能量以脉冲形式向外辐射,形成微气压波,严重影响隧道出口附近环境。当高速磁浮列车速度达到600 km/h以上时,这一问题更加显著。为此,提出一种具有谐振腔结构的隧道,采用三维、非定常、可压缩N–S方程和SST k–ω湍流模型研究其对高速磁浮列车通过隧道的气动效应减缓特性,并对2种谐振腔方案的减缓效果进行了数值模拟和动模型试验验证。研究结果表明:在隧道内冗余空间安装谐振腔结构,可以耗散压缩波能量,减小压缩波压力梯度,对隧道出口微气压波现象有明显减缓作用;与无谐振腔结构的隧道相比,谐振腔结构对隧道出口20和50 m处微气压波的减缓效果分别为41.87%和40.15%;微气压波减缓效果与隧道内谐振腔数量成线性关系;动模型试验进一步验证了数值模拟方法优选方案的准确性,不同速度试验结果表明微气压波减缓效果与运行速度正相关。 相似文献
42.
43.
44.
Langtry和Menter提出的转捩预测模型需要改进以具备预测横流转捩的能力。当地变量Helicity参数可以指示边界层内的横流信息,因而可用来构造适用于复杂构型以及当代计算流体力学(CFD)并行计算的横流转捩预测模型。实现了基于Helicity参数的横流转捩预测模型,对于后掠角为45°的NLF(2)-0415无限展长后掠翼,模型能够预测不同雷诺数对横流转捩的影响,但是对6:1椭球的横流转捩预测结果与试验数据相差较多。针对实现的横流转捩预测模型的缺点,考虑横流速度因素进行改进。横流速度的求解经过简化近似可以当地求解,因而保证了改进的模型完全基于当地变量的优势。采用改进后的横流转捩预测模型分别对NLF(2)-0415机翼、6:1椭球以及DLR-F5机翼进行数值模拟,并与试验数据进行对比分析,结果显示改进后的横流转捩预测模型可以较为准确地捕捉横流转捩现象。 相似文献
45.
建立了短距/垂直起降(S/VTOL)飞机近地面升力损失的流场计算模型.通过数值模拟得出特定升力布局的飞机近地面状态各工况的升力损失.采用响应面法获得了飞机升力损失关于喷管落压比(NPR)、来流速度及飞机高度的2阶响应曲面函数及显著影响飞机升力损失的关键因素.并分析了喷管落压比、来流速度及飞机高度对飞机升力损失的交互影响作用,优化得出给定工况范围内升力损失最小的工作点.研究表明:仅考虑单因素影响时,升力损失随高度、落压比的增大而减小,随来流速度的增大而增大;考虑两因素交互作用时,高度与落压比及来流速度与落压比对升力损失存在交互影响,而高度与来流速度对升力损失无交互影响;优化获得的升力损失最小的工作点是飞机距地面高度为9D(D为喷管直径)、喷飞机高度为3、来流速度为0m/s,此时的升力损失为1.3%. 相似文献
46.
在设计短舱外罩型线时,希望尽可能使其表面边界层保持层流状态,以减小摩阻,提高有效载荷。理解边界层的转捩机制,并准确预估转捩发生的位置,有利于有效评估不同外罩型线设计方案。以巡航状态下3种不同外罩型线的通气短舱为研究对象,采用线性稳定性理论分析了边界层稳定性特征,并综合考虑T-S波和激波诱导分离泡这两种转捩机制,预测了不同外罩型线下短舱边界层的转捩位置。结果表明,逆压梯度越大,T-S波越不稳定,流动分离的位置也越靠前。因此,设计时应尽可能保持大范围的顺压梯度并减小逆压梯度,这将有利于推迟转捩发生。此外,针对风洞实验中的短舱缩比模型,比较了预测的转捩位置与实验转捩位置,发现两者的转捩线在形态上非常一致,进一步证实了预测方法的有效性。
相似文献47.
为克服围绕复杂倾转旋翼机生成高质量一体化结构网格的困难,将分块网格策略与嵌套网格方法融合,提出并建立了一套适用于倾转旋翼机气动干扰分析的新型嵌套网格生成方法。该方法中,将整体网格按照倾转旋翼机结构特性进行了分块生成,在保证插值精度的基础上降低了网格规模。为高效连接不同部件网格,首先,引入Inverse Map方法来辅助部件网格定位,采用新颖的多向投影方法保证了部件间洞边界的连续性;其次,基于独立挖洞嵌套策略完成机身与背景网格的组合,并使用了相应的辅助计算坐标进行背景边界网格标识。在贴体网格区域采用基于S A(Spalart Allmaras)湍流模型可压缩RANS(雷诺平均Navier Stokes)方程求解流场,背景网格区域采用欧拉方程,并运用了SPMD(single program, multiple data)模式的并行加速技术,建立了适合倾转旋翼机气动干扰特性分析的高效混合CFD方法。采用Robin直升机机身作为数值算例,验证了CFD方法的有效性。在此基础上着重对倾转旋翼机在悬停、过渡和前飞巡航模式下的干扰流场进行了数值分析研究,分别得出了悬停状态下倾转旋翼机典型的“喷泉效应”干扰现象、过渡状态下的非定常气动干扰特性以及巡航状态下的部件气动变化特性,计算结果表明建立的新型嵌套网格方法能够较好地表征倾转旋翼机外形特性,并能够有效地用于倾转旋翼机的气动特性分析,加速比能超过5.0。 相似文献
48.
拓展了二维间断Galerkin(DG)有限元方法研究,将该数值方法用于三维可压缩欧拉方程和Navier-Stokes方程的求解。基于六面体网格单元,采用插值方法将物面的四边形面网格单元构造为弯曲面网格单元,更好地表述了真实物面特征;物面边界相邻体网格单元相应构造为高阶体网格单元,其余体网格单元采用八节点六面体单元,以较小的计算代价使网格满足DG方法计算需求。通过对三维带bump管道内流、圆球绕流以及旋转流线体绕流进行的数值求解,验证了边界弯曲方法的可行性及DG方法的高精度特性。此外,由于采用了隐式计算方法,仅需较少的时间步就能迭代收敛。 相似文献
49.
50.
通过计算流体力学数值仿真和高速彩色纹影照片显示技术对马赫数4拟似冲击波进行研究。实验是在日本室兰工业大学的压力—真空型超声速风洞中进行的。数值计算是采用三阶精度的QUICK格式和Spalart-Allmaras湍流模型进行的。用实验验证CFD模型,计算结果与实验显示出较好的一致性。可以得出结论,从目前的CFD模型获得的计算结果是精确的。因而,实验很难获得的拟似冲击波流场内部一些流动量可以通过数值仿真结果进行分析。另外,推测了马赫数4拟似冲击波非对称的原因。 相似文献