首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   122篇
  国内免费   61篇
航空   244篇
航天技术   69篇
综合类   9篇
航天   48篇
  2023年   9篇
  2022年   23篇
  2021年   24篇
  2020年   27篇
  2019年   19篇
  2018年   12篇
  2017年   12篇
  2016年   10篇
  2015年   5篇
  2014年   14篇
  2013年   17篇
  2012年   12篇
  2011年   14篇
  2010年   19篇
  2009年   14篇
  2008年   16篇
  2007年   12篇
  2006年   10篇
  2005年   7篇
  2004年   10篇
  2003年   7篇
  2002年   1篇
  2001年   4篇
  2000年   6篇
  1999年   4篇
  1998年   10篇
  1997年   10篇
  1996年   9篇
  1995年   13篇
  1994年   5篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
排序方式: 共有370条查询结果,搜索用时 109 毫秒
81.
激波和边界层相互作用区域局部烧蚀的理论计算方法   总被引:1,自引:0,他引:1  
任芬  孙洪森 《宇航学报》1994,15(3):35-42
激波和边界层相互作用区域的局部烧蚀计算是极为复杂的非定常湍流分离流动条件下的烧蚀分析问题,本文将这一复杂的物理化学和气体动力学过程简化为二维前向台阶分离区的准定常烧蚀问题来处理,将偏微分的控制方程组简化为超越代数方程组,提供了一个有一定精度的理论分析方法,理论计算结果与实验数据相当吻合。  相似文献   
82.
Some flares are known to drive seismic transients into the solar interior. The effects of these seismic transients are seen in helioseismic observations of the Sun’s surface thousands of km from their sources in the hour succeeding the impulsive phase of the flare. Energetic particles impinging from the corona into the chromosphere are known to drive strong, downward-propagating shocks in active region chromospheres during the impulsive phases of flares. H observations have served as an important diagnostic of these shocks, showing intense emission with characteristic transient redshifts. In most flares no detectable transients penetrate beneath the active region photosphere. In those that do, there is a strong correlation between compact white-light emission and the signature of seismic emission. This study introduces the first known H observations of acoustically active flares, centered in the core of the line. The morphology of line-core emission H in the impulsive phase of the flare is similar to that of co-spatial line-core emission in NaD1, encompassing the site of seismic emission but more extended. The latter shows a compact red shift in the region of seismic emission, but a similar feature is known to appear in a conjugate magnetic footpoint from which no seismic emission emanates. Radiative MHD modelling based on the profiles of chromospheric line emission during the impulsive phases of flares can contribute significantly to our understanding of the mechanics of flare acoustic emission penetrating into the solar interior and the conditions under which it occurs.  相似文献   
83.
本文从运动气流的二维激波动力学方程组出发,提出了一种计算平面运动激波和尖锥头激波迎面干扰问题的新方法。该方法可以计算穿透激波的强度和形状,马赫反射时三波点的轨迹,马赫杆的强度和几何形状,以及锥面峰值压力的大小。计算结果与数值模拟、其它计算方法以及实验数据进行了比较,结果表明本方法不仅精度较高,而且保持了简捷,省机时的优点。  相似文献   
84.
Jets, whatever small (e.g. spicules) or large (e.g. macrospicules) their size, may play a key role in momentum and energy transport from photosphere to chromosphere and at least to the low corona. Here, we investigate the properties of abundant, large-scale dynamic jets observable in the solar atmosphere: the macrospicules (MS). These jets are observationally more distinct phenomena than their little, and perhaps more ubiquitous, cousins, the spicules. Investigation of long-term variation of the properties of macrospicules may help to a better understanding of their underlying physics of generation and role in coronal heating. Taking advantage of the high temporal and spatial resolution of the Solar Dynamics Observatory, a new dataset, with several hundreds of macrospicules, was constructed encompassing a period of observations over six years. Here, we analyse the measured properties and relations between these properties of macrospicules as function of time during the observed time interval. We found that cross-correlations of several of these macrospicule properties display a strong oscillatory pattern. Next, wavelet analysis is used to provide more detailed information about the temporal behaviour of the various properties of MS. For coronal hole macrospicules, a significant peak is found at around 2-year period. This peak also exists partially or is shifted to longer period, in the case of quiet Sun macrospicules. These observed findings may be rooted in the underlying mechanism generating the solar magnetic field, i.e. the global solar dynamo.  相似文献   
85.
Cylindrical and spherical dust-electron-acoustic (DEA) shock waves propagating in a dusty plasma (containing cold inertial electrons, hot Maxwellian electrons, stationary and streaming ions, and charge fluctuating stationary dust) are theoretically investigated by reductive perturbation method. It is shown that the effect of the dust charge fluctuation introduces some new features in the nonlinear propagation of the DEA waves, particularly the dust charge fluctuation provides a source of dissipation, and is responsible for the formation of the DEA shock structures. It is also found that the basic features of the DEA nonlinear structures are significantly modified by the non-planar (viz. cylindrical and spherical) geometry, and that the height of the cylindrical DEA shock structures are larger than that of the planar DEA shock structures, but smaller than that of the spherical ones. The implications of these results in laboratory dusty plasmas are briefly discussed.  相似文献   
86.
The presence of small-amplitude oscillations in prominences is well-known from long time ago. These oscillations, whose exciters are still unknown, seem to be of local nature and are interpreted in terms of magnetohydrodynamic (MHD) waves. During last years, observational evidence about the damping of these oscillations has grown and several mechanisms able to damp these oscillations have been the subject of intense theoretical modelling. Among them, the most efficient seem to be radiative cooling and ion-neutral collisions. Radiative cooling is able to damp slow MHD waves efficiently, while ion-neutral collisions, in partially ionised plasmas like those of solar prominences, can also damp fast MHD waves. In this paper, we plan to summarize our current knowledge about the time and spatial damping of small-amplitude oscillations in prominences.  相似文献   
87.
We calculate the maximum energy that a particle can obtain at perpendicular interplanetary shock waves by the mechanism of diffusive shock acceleration. The influence of the energy range spectral index of the two-dimensional modes of the interplanetary turbulence is explored. We show that changes in this parameter lead to energies that differ in at least one order of magnitude. Therefore, the large scale structure of the turbulence is a key input if the maximum particle energy is calculated.  相似文献   
88.
The transport of energetic particles in the presence of magnetic turbulence can exhibit a variety of regimes different from the standard quasilinear diffusion. Here we discuss a number of solar and space problems where nonquasilinear diffusion is found, and then we illustrate anomalous transport regimes, for which the mean square deviation grows nonlinearly with time. In particular, we concentrate on superdiffusive regimes, and show what is the theoretical framework which is to be used to describe superdiffusion. We discuss the results of numerical simulations which show that superdiffusive and subdiffusive regimes are possible, and describe data analyses which allow to single out the superdiffusive transport from the observation of energetic particle profiles upstream of interplanetary shocks. The implications of superdiffusion on the efficiency of wave particle interactions are also discussed.  相似文献   
89.
The unsteady aerodynamic loads (pressure increment and generalized forces) acting on a deformable thin airfoil section are determined for its arbitrary motion in the incompressible flow with transverse gusts. In this case, the exact Küssner solution in series is used for harmonic oscillation of an airfoil, in which the Theodorsen function is approximated by a sum of fractional functions with poles. In the time domain, these functions are replaced by the unknown functions that satisfy the one-type ordinary first order differential equations. The equations obtained are combined with the differential equations of the airfoil motion in the generalized coordinates and are used for analyzing the aeroelastic system stability and calculating its dynamic response to gust loads.  相似文献   
90.
Three-dimensional computational fluid dynamics analyses have been employed to study the compressible and turbulent flow of the shock train in a convergent–divergent nozzle. The primary goal is to determine the behavior, location, and number of shocks. In this context, full multi-grid initialization, Reynolds stress turbulence model (RSM), and the grid adaption techniques in the Fluent software are utilized under the 3D investigation. The results showed that RSM solution matches with the experimental data suitably. The effects of applying heat generation sources and changing inlet flow total temperature have been investigated. Our simulations showed that changes in the heat generation rate and total temperature of the intake flow influence on the starting point of shock, shock strength, minimum pressure, as well as the maximum flow Mach number.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号