首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   554篇
  免费   155篇
  国内免费   111篇
航空   699篇
航天技术   10篇
综合类   57篇
航天   54篇
  2024年   3篇
  2023年   3篇
  2022年   19篇
  2021年   25篇
  2020年   36篇
  2019年   32篇
  2018年   32篇
  2017年   32篇
  2016年   31篇
  2015年   47篇
  2014年   49篇
  2013年   48篇
  2012年   56篇
  2011年   45篇
  2010年   35篇
  2009年   58篇
  2008年   39篇
  2007年   46篇
  2006年   28篇
  2005年   25篇
  2004年   20篇
  2003年   15篇
  2002年   19篇
  2001年   10篇
  2000年   14篇
  1999年   6篇
  1998年   6篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   4篇
  1992年   8篇
  1991年   2篇
  1990年   3篇
  1989年   5篇
  1988年   6篇
排序方式: 共有820条查询结果,搜索用时 15 毫秒
71.
在低速来流状态下试验研究了大攻角(α=0°~45°)和侧滑角(β=-15°~15°)对Caret进气道气动性能的影响。给出了在各攻角下进气道性能参数随侧滑角变化的特点及典型状态下进气道出口总压恢复系数分布图谱,分析了出口总压分布图谱与进气口流动之间的关系。试验表明:在低速来流状态(Ma≈0.1)下,随着攻角的增加(α从0°增加到45°),进气道总压恢复系数下降较小,总压畸变指数几乎不变,这有利于飞机的大攻角机动飞行。   相似文献   
72.
水泵内部流动实质上是复杂的三维非稳定流动 ,它对水泵性能及结构振动有重要影响。本文介绍了一种求解这种复杂内流动的数值方法。三维雷诺数平均的纳维斯托克斯方程 ( 3-DReynolds-averaged Navier-Stokes,RANS)以及标准 k-ε的方程用于描述水泵内非定常紊流流场。系统特性方程与水泵的 CFD模型相结合以考虑流体在管道中的加速 ;采用任意滑移网格界面模拟叶轮和静止部件之间的相互干涉 ;将整个叶轮作为分析对象 ,以考虑失速情况下流动的周向非对称。这些技术的结合包括了水泵内非稳定流动的物理实质。一台实验数据比较齐全的离心式 -扩压器水泵被用于验证所提出的数值方法  相似文献   
73.
下颔式进气道实验研究   总被引:1,自引:0,他引:1  
为了验证下颔式进气道 /前机身一体化设计方案的合理性及其进气道性能 ,对下颔式进气道 /前机身一体化设计方案进行了实验研究。测出了进气道总压恢复系数、畸变指数随流量系数、攻角、侧滑角的变化规律。结果表明 ,进气道性能较好 ,进气道 /发动机匹配良好。最后提出了下颔式进气道的进一步改进措施  相似文献   
74.
本文介绍了进排气调压系统测控改造的总体结构、通信网络、软件设计和系统功能。该系统以GE90—70的可编程控制器(PLC)为基础,将Ethernet和现场总线Genius相结合进行数据通信,采用下位机编程软件Cimplieity Machine Edition、上位机组态软件Cimplicity HMI编制设计软件系统,使整个系统具有较好的可靠性和可扩展性。能实现进排气压力调节的工况显示和过程控制。实际运行表明,该系统结构先进,控制可靠,配置灵活,可进一步提高高空台试验效率,降低试验风险。  相似文献   
75.
通过高低速风洞试验,对比迎角和侧滑角对机身腹部和机身两侧进气的进气道气动性能的影响。试验结果表明:在超音速来流状态下,当迎角增加到5°时,腹部进气道的气动性能改善,而两侧进气道的气动性能几乎不变;在亚音速来流状态下,当迎角从6°逐渐增加到所试验的值(高亚音速为12°,低速为30°),两侧进气道的气动性能逐渐明显变差,而腹部进气道的气动性能对迎角并不敏感,基本能保持无迎角时的性能;在高低速来流状态下,两种型式进气道的气动性能对所试验的侧滑角β(小于6°或9°)均不敏感。   相似文献   
76.
An investigation on the ventral diverterless high offset S-shaped inlet is carried out at Mach numbers from 0.600 to 1.534, angles of attack from -4° to 9.4°, and yaw angles from 0° to 8°. Results indicate: (1) a large region of low total pressure exists at the lower part of the inlet exit caused by the counter-rotating vortices in the S-shaped duct; (2) the performances of the inlet at Mach number 1.000 reach almost the highest, so the propulsion system could work efficiently in terms of aerodynamics; (3) the total pressure recovery increases slowly at first and then remains unvaried as the Mach number rises from 0.6 to 1.0, however, it does in an opposite manner in the conventional diverter-equipped S-shaped inlet; (4) the performances of the inlet are generally insensitive to angles of attack from -4° to 9.4° and yaw angles from 0° to 8° at Mach number 0.850, and angles of attack from -2° to 6° and yaw angles from 0° to 5° at Mach number 1.534.  相似文献   
77.
内乘波式进气道内收缩基本流场研究   总被引:10,自引:0,他引:10  
内收缩基本流场的设计直接决定了内乘波式进气道最终性能.编制二维轴对称特征线法程序,实现了来流马赫数6条件下的内收缩锥基本流场计算.提出以两道曲激波将内收缩锥流场划分为三个区域,反射激波与基本流场的交点所在平面流量平均参数作为内收缩锥基本流场的性能评价参数.分析发现,内收缩锥基本流场流动特征与平面二维流动和外锥流动存在显著不同,该类流场流动损失与二维平面流动相当,但压缩能力强.内锥角、中心体半径比两个几何参数对流场性能的影响具有相似规律,给出了相应表达式,从而为内乘波式进气道的设计提供了依据.  相似文献   
78.
典型二元高超声速进气道与侧压式进气道的性能比较   总被引:5,自引:8,他引:5  
在相同的约束条件下运用高超声速进气道已有的相关设计方法设计了两类典型的二元进气道与侧压式进气道,利用数值模拟手段对两类进气道的流场结构和总体性能开展了对比研究.研究发现,二元进气道出口流场畸变较小,流场均匀性优于侧压式进气道;二元进气道流量系数对飞行马赫数的敏感程度远高于侧压式进气道;设计点,二元进气道性能优于侧压式进气道.非设计点,尤其在接力状态下,侧压式进气道性能突出;侧压式进气道阻力特性优于二元进气道,而二元进气道的前体升力则高于侧压式进气道.   相似文献   
79.
S形进气道流动控制数值模拟研究   总被引:2,自引:0,他引:2  
采用CFD技术,结合试飞数据,对某S形进气道进行了加涡流发生器的流动控制数值模拟研究.着重分析了三个不同位置加涡流发生器后,进气道内部二次流的发展;之后比较了不加涡流发生器及不同位置加涡流发生器时进气道出口总压恢复、畸变等情况.结果表明涡流发生器明显地影响着进气道内部二次流的发展变化,涡流发生器对进气道出口周向稳态总压畸变有较大程度改善,但是对于提高总压恢复效果不明显.  相似文献   
80.
隐身外形飞行器用埋入式进气道的设计与风洞实验研究   总被引:2,自引:0,他引:2  
本文为隐身外形飞行器用埋入式进气道发展了一套设计方法。该方法的理论基础是埋入式进气道进气机理和气动S弯概念,其关键技术包含通道中心线设计、横截面面积变化规律设计以及横截面形状设计等,各技术可以方便地用数学方法加以描述,整个方法易于编程实现。并结合一种隐身外形无人机提出了埋入式进气道方案,通过实验得到了此类隐身外形飞行器用埋入式进气道的气动特性。结果表明,所提出的埋入式进气道方案可行,所设计的模型进气道性能良好,所发展的设计方法合理。同时验证了埋入式进气道进气机理的正确性,也表明隐身外形飞行器与埋入式进气道的组合方案具有十分光明的应用前景。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号