首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   10篇
  国内免费   3篇
航空   29篇
航天技术   31篇
综合类   5篇
航天   19篇
  2024年   1篇
  2023年   2篇
  2022年   3篇
  2021年   6篇
  2020年   3篇
  2019年   5篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   6篇
  2013年   4篇
  2012年   6篇
  2011年   4篇
  2010年   3篇
  2009年   5篇
  2008年   2篇
  2007年   1篇
  2006年   7篇
  2005年   3篇
  2004年   1篇
  2002年   1篇
  2000年   3篇
  1999年   2篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有84条查询结果,搜索用时 31 毫秒
41.
基于航天TDICCD相机像移分析的PSF估计及图像复原算法研究   总被引:2,自引:0,他引:2  
谢冰  焦斌亮 《宇航学报》2010,31(3):936-936
根据时间延迟积分电荷耦合器件(TDICCD)特殊的工作原理,分析了其产生像移的原因 ,基于对TDICCD像移的分析估计出模糊图像的点扩散函数(PSF)。根据TDICCD像移产生的机 理,建立了图像退化的数学模型,并在功率谱均衡复原算法的基础之上提出了像移复原滤波的 数学表达式,对运动模糊图像进行了半盲恢复,通过Matlab仿真证明了图像复原算法的可行 性和有效性。
  相似文献   
42.
The deformation of the solar-sail membrane is an important factor for causing inaccuracies in the solar-sail missions. This paper describes the solar sail under deformation by using a new modelling technique based on point cloud and triangular mesh generation. Two types of deformation, stemming from wrinkling and billowing, are modelled. The changes in the solar radiation pressure force and the moment caused by deformation are calculated and compared to the ideal non-deformed case. The heliocentric spiral trajectory and the orbital angular momentum reversal trajectory are taken as examples to quantify the influence of the deformation from an orbit point of view. Additionally, point cloud simplification, based on the normal vector and bounding box, is utilized to simplify the original deformed-sail model. It involves a reasonable reduction and renewal of the points in the model considering the variation of surface curvature. The simplification and its modelling accuracy are numerically investigated as well as computational efficiency.  相似文献   
43.
In order to speed up Precise Point Positioning (PPP)’s convergence, a combined PPP method with GPS and GLONASS which is based on using raw observations is proposed, and the positioning results and convergence time have been compared with that of single system. The ionospheric delays and receiver’s Differential Code Bias (DCB) corrections are estimated as unknown parameters in this method. The numerical results show that the combined PPP has not caused significant impacts on the final solutions, but it greatly improved Position Dilution of Precision (PDOP) and convergence speed and enhanced the reliability of the solution. Meanwhile, the convergence speed is greatly influenced by the receiver’s DCB, positioning results in horizontal which are better than 10 cm can be realized within 10 min. In addition, the ionosphere and DCB products can be provided with high precision.  相似文献   
44.
In order to better understand the characteristics of Yohkoh Soft X-ray Telescope (SXT) mirror, we have analyzed the in-flight overexposed image (the starburst image) obtained during the solar flare observation. It has been revealed from our study that the intensity distribution inside the shadows shown in the scattering difference image contains little of the scattered component of the PSF and matches almost correctly the extension of the PSF core profile. Also it is found that the scattering wing of the SXT PSF is connected smoothly to the PSF core within the distance of about 100–200 arcsec from the peak. With numerical simulations we have shown that an increase in energy affects not only the level of scattering wing, but also both the shape and the absolute level of the PSF core. The results have revealed, however, that the energy dependence for the SXT PSF cannot be easily estimated with the data obtained from one filter alone, which implies that the data analysis using multiple filters will enable us to determine the absolute amount of scattered component as well as the energy dependence of the SXT PSF. Details on the analysis of starburst image and the results from numerical simulations will be introduced and discussed thoroughly.  相似文献   
45.
Since China’s BeiDou satellite navigation system (BDS) began to provide regional navigation service for Asia-Pacific region after 2012, more new generation BDS satellites have been launched to further expand BDS’s coverage to be global. In this contribution, precise positioning models based on BDS and the corresponding mathematical algorithms are presented in detail. Then, an evaluation on BDS’s real-time dynamic positioning and navigation performance is presented in Precise Point Positioning (PPP), Real-time Kinematic (RTK), Inertial Navigation System (INS) tightly aided PPP and RTK modes by processing a set of land-borne vehicle experiment data. Results indicate that BDS positioning Root Mean Square (RMS) in north, east, and vertical components are 2.0, 2.7, and 7.6?cm in RTK mode and 7.8, 14.7, and 24.8?cm in PPP mode, which are close to GPS positioning accuracy. Meanwhile, with the help of INS, about 38.8%, 67.5%, and 66.5% improvements can be obtained by using PPP/INS tight-integration mode. Such enhancements in RTK/INS tight-integration mode are 14.1%, 34.0%, and 41.9%. Moreover, the accuracy of velocimetry and attitude determination can be improved to be better than 1?cm/s and 0.1°, respectively. Besides, the continuity and reliability of BDS in both PPP and RTK modes can also be ameliorated significantly by INS during satellite signal missing periods.  相似文献   
46.
Besides the classical geodetic methods, GPS (Global Positioning System) based positioning methods are widely used for monitoring crustal, structural, ground etc., deformations in recent years. Currently, two main GPS positioning methods are used: Relative and Precise Point Positioning (PPP) methods. It is crucial to know which amount of displacement can be detected with these two methods in order to inform their usability according to the types of deformation. Therefore, this study conducted to investigate horizontal and vertical displacement monitoring performance and capability of determining the direction of displacements of both methods using a developed displacement simulator apparatus. For this purpose, 20 simulated displacement tests were handled. Besides the 24?h data sets, 12?h, 8?h, 4?h and 2?h subsets were considered to examine the influence of short time spans. Each data sets were processed using GAMIT/GLOBK and GIPSY/OASIS scientific software for relative and PPP applications respectively and derived displacements were compared to the simulated (true) displacements. Then statistical significance test was applied. Results of the experiment show that using 24?h data sets, relative method can determine up to 6.0?mm horizontal displacement and 12.3?mm vertical displacement, while PPP method can detect 8.1?mm and 19.2?mm displacements in horizontal and vertical directions respectively. Minimum detected displacements are found to grow larger as time spans are shortened.  相似文献   
47.
The Geostationary Earth Orbit (GEO) satellite is a crucial part of the BeiDou Navigation Satellite System (BDS) constellation. However, due to various perturbation forces acting on the GEO satellite, it drifts gradually over time. Thus, frequent orbit maneuvers are required to maintain the satellite at its designed position. During the orbit maneuver and recovery periods, the orbit quality of the maneuvered satellite computed with broadcast navigation ephemeris will be significantly degraded. Furthermore, the conventional dynamic Precise Orbit Determination (POD) approach may not work well, because of a lack of publicly available satellite information for modeling the thrust forces. In this paper, a near real-time approach free of thrust forces modeling is proposed for BDS GEO satellite orbit determination and maneuver analysis based on the Reversed Point Positioning (RPP). First, the station coordinates and receiver clock offsets are estimated by GPS/BDS combined Single Point Positioning (SPP) with single-frequency phase-smoothed pseudorange observations. Then, with the fixed station coordinates and receiver clock offsets, the RPP method can be conducted to determine the GEO satellite orbits. When no orbit maneuvers occur, the proposed method can obtain orbit accuracies of 0.92, 2.74, and 8.30?m in the radial, along-track, and cross-track directions, respectively. The average orbit-only Signal-In-Space Range Error (SISRE) is 1.23?m, which is slightly poorer than that of the broadcast navigation ephemeris. Using four days of GEO maneuvered datasets, it is further demonstrated that the derived orbits can be employed to characterize the behaviors of GEO satellite maneuvers, such as the time span of the maneuver as well as the satellite thrusting accelerations. These results prove the efficiency of the proposed method for near real-time GEO satellite orbit determination during maneuvers.  相似文献   
48.
提出了针对含有斑、点目标的遥感图像进行有损压缩的一种方法,介绍了去局部均值算法原理,依据3σ准则推导了门限取值公式,给出了算法的流程。通过仿真实验,分析了算法的有效性。  相似文献   
49.
为解决动背景下高速掠过点目标的实时探测问题,探讨了一种新的算法:首先采用基于帧间差分向量一阶范数的目标检测算法对图象进行预处理,实现大面积背景抑制,提取可疑目标点;然后,对提取的可疑目标点采用双窗口搜索算法捕捉运动点目标。该算法简单,运算量小,易于实现。实验结果验证了算法的有效性。  相似文献   
50.
GPS高精度定位技术在动态复杂环境中,其定位精度、可靠性和连续性因卫星信号频繁失锁而变差。为此,提出了采用基于RTS滤波(Rauch-Tung-Striebel Filter)的GPS+BDS非差非组合PPP(Precise Point Positioning)与INS(Inertial Navigation System)紧组合模型的策略来克服GPS在动态定位中的弱点。其中,采用GPS+BDS双系统观测数据,可提高PPP解算中的可用卫星数,改善星站间定位几何强度和提高PPP收敛速度;采用PPP/INS紧组合,利用INS的自主定位特性和短期高精度特性,可有效改善复杂环境下的定位精度和连续性;采用RTS滤波,可进一步提高PPP/INS紧组合性能。首先推导了GPS+BDS非差非组合函数模型、PPP/INS紧组合函数模型和RTS滤波函数模型,然后利用一组车载动态数据,对动态GPS PPP、GPS+BDS PPP、GPS/INS紧组合、GPS+BDS PPP/INS紧组合和基于RTS的GPS+BDS PPP/IMU紧组合的定位、测速和定姿性能进行分析。实验结果表明,该方案可有效提高定位(58%~72%)、测速(74%~82%)和定姿(4%~23%)精度,特别是对卫星失锁期间的定位性能改善尤为明显。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号