首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   895篇
  免费   235篇
  国内免费   233篇
航空   770篇
航天技术   194篇
综合类   122篇
航天   277篇
  2024年   10篇
  2023年   43篇
  2022年   70篇
  2021年   74篇
  2020年   70篇
  2019年   60篇
  2018年   50篇
  2017年   53篇
  2016年   78篇
  2015年   46篇
  2014年   74篇
  2013年   54篇
  2012年   59篇
  2011年   66篇
  2010年   57篇
  2009年   47篇
  2008年   48篇
  2007年   62篇
  2006年   54篇
  2005年   50篇
  2004年   31篇
  2003年   26篇
  2002年   23篇
  2001年   31篇
  2000年   17篇
  1999年   16篇
  1998年   19篇
  1997年   11篇
  1996年   12篇
  1995年   7篇
  1994年   10篇
  1993年   7篇
  1992年   9篇
  1991年   3篇
  1990年   4篇
  1989年   7篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
排序方式: 共有1363条查询结果,搜索用时 0 毫秒
711.
为了研究受侧向膨胀影响时爆震波的传播特性及自持机理,在实验段对比分析了当量比(0.70~2.25)和波前预混气高度(1,2,3cm)对爆震波自持传播能力的影响.实验表明:波前预混气高度越高、预混气活性越强,则爆震波抵御侧向膨胀影响的能力越强,速度亏损越小,自持传播能力越强.运用Fay流体扩张理论,Dabora和Murray速度亏损理论,并结合Zeldovich-von Neumann-D?ring(ZND)模型对受侧向膨胀影响的爆震波激波角、界面角和速度亏损进行理论预测,证明Dabora的理论预测与实验值吻合很好,且发现若要受侧向膨胀影响的爆震波自持传播,则其速度亏损的极限为7.0%~11.0%.   相似文献   
712.
以速度方向可操作度作为跳跃性能的评价指标,从机构设计角度寻求改善仿蛙跳跃机器人跳跃性能的方法.在仿蛙跳跃机器人机构模型的基础上,建立了起跳阶段的运动学方程,得到机器人从关节空间到质心运动空间的速度映射关系,结合速度方向可操作度,利用优化算法对仿蛙跳跃机器人的机构参数进行优化,使机器人的跳跃性能达到最佳.优化结果表明,运用速度方向可操作度理论,对跳跃机器人机构参数进行优化研究是有效可行的.  相似文献   
713.
针对某air/H2燃烧系统,建立起流动、传热、燃烧多场耦合有限体积动态数值模型,构建了通用化的反应机理库和配套的物性参数库,分别采用热力计算方法和3套氢氧反应机理方法进行仿真;基于反应机理的仿真描述了点火与熄火过程,揭示了各基元反应和组分变化对燃烧流动瞬态过程的影响。与已经过试验验证的热力计算方法对比,结果表明:Williams机理符合最好,Conaire机理次之,Evans机理符合相对较差。相比Conaire机理,采用Williams反应机理使反应熄火温度由1200K降低至1155.3K,在1222.3K的低温工况下,计算结果误差由Conaire机理的4.7%降低至2.74%,使多场耦合数值系统的应用范围更广、计算结果更佳;低温工况下,H2O2及其相关反应对氢氧机理的描述精度会产生较大影响。   相似文献   
714.
It is an inevitable trend of sustainable manufacturing to replace flood and dry machining with minimum quantity lubrication(MQL) technology. Nevertheless, for aeronautical difficult-tomachine materials, MQL couldn’t meet the high demand of cooling and lubrication due to high heat generation during machining. Nano-biolubricants, especially non-toxic carbon group nano-enhancers(CGNs) are used, can solve this technical bottleneck. However, the machining mechanisms under lubrication of CGNs are uncl...  相似文献   
715.
标签样本少条件下机电设备的准确故障诊断对于提高复杂机电设备的健康管理能力具有重要意义。针对标签样本少条件下难以建立准确故障诊断模型的问题,在半监督生成对抗网络的基础上,将注意力模块引入生成对抗网络,并利用格拉姆角场将一维数据转换为二维图像;结合双向生成对抗网络特点,提出一种基于双重注意力机制的半监督双向生成对抗网络(S-BIGAN)机电设备故障诊断模型,以轴承数据为例进行验证。结果表明:与CNN-SVM、SGAN 等算法相比,本文提出的模型能够提高样本生成质量和故障分类特征,有效解决标签样本少情况下的故障诊断问题,极大地提高了故障诊断准确率。  相似文献   
716.
经求解随时间正弦变化的非定常压力梯度下,管内流体振荡时的运动方程和能量方程,得到了振荡管流换热的速度场、温度场以及当量导温系数的解析解.通过分析可知,影响管内振荡流轴向换热的无量纲参数主要有:无量纲振荡频率,无量纲振幅和流体普朗特数.其中,无量纲振荡频率直接影响流动的速度分布,且随着无量纲振荡频率增加,强化换热效果增强.随着无量纲振幅的增大,管内流动有效导热面积增加,等温面法向温度梯度也增加,使得强化换热效果增强.强化换热效果同样也随流体普朗特数的增加而增强.   相似文献   
717.
陈丽  贾源源 《遥测遥控》2023,44(2):92-99
珠海一号高光谱卫星具有高空间、高光谱、高时间分辨率等特点,有效推动了高光谱遥感数据在农林环境、自然资源探测等领域的广泛应用,其中高精准的云检测是遥感数据预处理的关键步骤。如何对高光谱图像有效特征提取并克服传统云检测方法特征复杂、算法参数多、计算量大、鲁棒性差等缺陷,是高光谱云检测研究的关键问题。为此,提出了一种多尺度特征融合的U型结构网络,模型首先利用残差模块进行特征编码,并将编码进行多尺度融合,在网络的跳跃连接处引入了坐标注意力机制提取有用信息,最后通过残差解码得到输出结果。实验前首先利用主成分分析降维,将高光谱数据重构为4维影像数据,然后通过数据标注与数据增强,建立珠海一号高光谱影像云检测数据集。采用了38-Cloud云数据集训练初始网络参数,随后利用构建的数据集进行迁移学习。实验结果表明,对于所建立的珠海一号高光谱云检测数据集,所提方法的像素准确率达到92.28%,可以实现高精度的高光谱遥感影像云检测。  相似文献   
718.
基于锯齿尾缘结构在航空发动机上的应用,对其降噪机理进行研究。通过3维热线风速仪测量2种尾缘结构的尾迹流场揭示锯齿降噪的流动本质,其结果显示出锯齿尾缘后流场的细微湍流结构变化规律,并在尾迹流场可见单个锯齿的齿峰和齿谷。结果表明:锯齿尾缘后尾迹中心线速度的衰减率比直尾缘的高;湍流峰值因为锯齿尾缘的存在出现在离翼型更远处,锯齿在近尾迹区产生了额外的马蹄涡。  相似文献   
719.
为实现仿昆虫翼尖的空间“8”字型运动轨迹,设计了一种基于空间revolute-universal-revolute-spherical(RURS)四杆机构的扑翼机构,通过单自由度驱动即可输出三维的空间“8”字轨迹。运用Denavit-Hartenberg参数法建立了空间四杆机构的运动学模型,利用遗传算法对机构进行了优化,得到了利于扑翼飞行的机构参数。基于该空间四杆机构的优化结果,建立了一种微型的扑翼机构虚拟样机,通过ADAMS仿真得到其输出运动并验证了运动学理论计算的正确性。所设计的扑翼机构扑动幅度达到149.8°,扭转角度达到29.9°,且“8”字型扑动规律与昆虫翅膀的运动更为相近。扑翼机构的最大尺寸不超过5.8cm,仿真发现的时间非对称扑动对气动性能有一定提升,对于微型化、轻质化、高效化扑翼飞行器的研究具有重要的参考价值。   相似文献   
720.
叶尖间隙对离心叶轮偏置分流叶片工作机理的影响   总被引:2,自引:0,他引:2  
采用计算流体力学方法研究了不同叶尖间隙情况下偏置分流叶片提升离心叶轮性能的机理.叶尖间隙较小时,主叶片吸力面附近分离区导致主要损失,分流叶片偏向于主叶片吸力面利于削弱损失、提升叶轮性能;随着叶尖间隙的增加,泄漏流的影响增加以至损失集中于分流叶片和主叶片压力之间的通道,分流叶片宜向主叶片压力面偏置,以减少泄漏流在同一通道的聚集.叶尖间隙和分流叶片周向位置对间隙泄漏流、叶片吸力面分离形成的损失及相互关系有着耦合影响,分流叶片周向位置的改变可以调整通道的横向压力梯度、泄漏流掺混入主流的位置,改善分流叶片两侧通道的损失的分配,分流叶片最佳偏置方向随叶尖间隙的大小而发生改变.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号