首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   390篇
  免费   161篇
  国内免费   29篇
航空   412篇
航天技术   28篇
综合类   28篇
航天   112篇
  2024年   8篇
  2023年   14篇
  2022年   16篇
  2021年   22篇
  2020年   20篇
  2019年   21篇
  2018年   16篇
  2017年   24篇
  2016年   26篇
  2015年   23篇
  2014年   28篇
  2013年   15篇
  2012年   20篇
  2011年   23篇
  2010年   18篇
  2009年   15篇
  2008年   16篇
  2007年   16篇
  2006年   6篇
  2005年   17篇
  2004年   14篇
  2003年   12篇
  2002年   12篇
  2001年   9篇
  2000年   15篇
  1999年   12篇
  1998年   17篇
  1997年   14篇
  1996年   11篇
  1995年   14篇
  1994年   10篇
  1993年   10篇
  1992年   12篇
  1991年   11篇
  1990年   12篇
  1989年   11篇
  1988年   9篇
  1987年   7篇
  1986年   1篇
  1985年   2篇
  1982年   1篇
排序方式: 共有580条查询结果,搜索用时 31 毫秒
401.
压气机来流普遍存在端区附面层扭曲问题,前期研究证实可采用叶片端区前缘边条(Leading Edge Strake Blade,LESB)技术解决,因此,进一步进行前缘边条几何影响和变工况适应性的参数化数值研究。选用折转角为60°的NACA65叶栅为例,对前缘边条高度、前伸长度以及在-5°、0°、+5°攻角下的性能进行了参数化研究,对其规律、机理进行了总结和分析。结果表明:前缘边条高度、前伸长度选取存在最佳值,边条高度选取略大于来流扭曲附面层厚度为宜,而边条长度在不同工况下好坏影响各异,需折衷考虑;所设计较优方案揭示了前缘边条对端区流动的调控作用,表现出良好的变工况性能。  相似文献   
402.
研究了翘曲端壁对大折转角压气机叶栅流动的影响.结果表明:翘曲最高点位于压力面时效果较好,翘曲高度为2%叶高时出口总压损失下降约5.8%;而翘曲最高点位于压力面与吸力面之间时效果则不理想;翘曲高度为5%叶高、翘曲最高点距压力面为0.25倍节距时出口总压损失增加约3.4%,此时端壁附近压力梯度呈先顺后逆变化,低能流体由压力面端区迁移至10%叶高处与吸力面附近低能流体汇合,增加了流道内二次流强度;当来流攻角不为零时,下端壁翘曲所构造的反向压差对于减小二次流强度、降低出口总压损失的效果仍比较明显,+3°攻角下出口总压损失减小约5.6%,-3°攻角下出口总压损失减小约3.5%,但同时其导致的负荷沿径向重新分配也将使得上端壁附近流动状况也发生改变.   相似文献   
403.
针对某航空发动机涡轮导向器,采用数值模拟的方法研究了缘板安装缝隙泄漏流对叶栅通道流场结构及叶栅性能参数的影响,对比分析了不同泄漏流压力、缝隙宽度及缝隙相对位置条件下的泄漏量,及其对叶栅性能参数的影响规律.研究发现:在压差作用下冷气通过缘板安装缝隙进入燃气主流通道并在中段的位置形成螺旋涡系,对端壁二次流产生明显影响,其作用效果沿叶高方向逐渐降低,最大影响区域为44.44%叶高.计算结果表明:随着泄漏流压力的提高、缝隙宽度的增加、缝隙与发动机主轴方向夹角的变大,叶栅的能量损失系数和泄漏量都呈现出了单调增加的趋势.在研究的参数范围内,涡轮缘板安装缝隙导致的泄漏流可使叶栅的能量损失系数增加14%~62%.   相似文献   
404.
非对称端壁造型应用在轴流压气机和涡轮中具有较好的提高效率的作用。为了探究非对称端壁造型对离心压气机性能的影响,借鉴非对称端壁造型在轴流压气机中的设计经验,借助Autoblade和CFX商用软件,设计了四种非对称端壁造型结构,并对带叶片式扩压器的离心压气机展开数值计算研究。研究发现,与原型压气机相比,采用压力面附近为凸曲率形状、吸力面附近为凹曲率形状的非对称端壁造型结构PEW1_10%(profiled end wall 1_10%)可以在保证全工况效率不降低的情况下,使离心压气机的性能曲线向小流量和大流量均有拓展,稳定工作范围扩大11.8%。通过分析流场发现,在近喘振工况,非对称端壁造型PEW1_10%使扩压器通道内流量重新分配,吸力面附近径向速度增大,低能流体减少,改善了扩压器通道的流动状况,进而推迟喘振的发生。  相似文献   
405.
为提高大子午扩张涡轮端区气动及传热性能,基于大子午扩张涡轮上端壁静压场分布细节,使用Bezier曲线与正弦三角函数曲线相结合的非轴对称端壁造型技术,对某1.5级大子午扩张涡轮第2级静叶上端壁进行8种非对称造型设计,并通过SST(shear stress transfer)湍流模型数值求解RANS(Reynolds-averaged Navier-Stokes equations)方程组对造型前后端壁进行了流动与传热特性的研究。结果表明:对大子午扩张涡轮上端壁进行非轴对称造型设计可有效改善其上端区叶片通道内横向压差分布情况;对其上端壁压力面进行通道内凸起造型可降低出口总压损失,当凸起幅值为S2叶高的5%时,出口总压损失最多可降低约1.1%;对其上端壁吸、压力面均进行通道内凹陷造型将减小机匣与叶片的热负荷,当凹陷幅值为S2叶高的5%时,机匣及叶片的热负荷最多可分别降低约3.1%与2.8%。  相似文献   
406.
连续纤维增韧的碳化硅复合材料火焰筒是航空发动机重要的热端部件之一,对其进行热冲击性能评估具有十分重要的 意义。为了考察陶瓷基材料与金属材料的连接性能及火焰筒本体特征部位的抗热疲劳性能,采用扣锁式壁面温度测试方法和基 于材料热响应试验制定的热冲击时域循环,对连续纤维增韧的碳化硅复合材料制备的航空发动机火焰筒试件进行燃气热冲击性 能研究。试验中,通过准稳定壁温获取试验得到了火焰筒试验件准定常状态时外壁面温度参数;按照加速试车原则确定了热冲击 时域循环参数;参照航空发动机100次起降对应的燃烧室经历的热载荷,以100次时域循环作为火焰筒试件试验评估的最终循环 次。试验结果表明:经100次热冲击循环后,试件考核部位表现出较好的连接性和抗热疲劳性能,为连续纤维增韧的碳化硅复合 材料制备的航空发动机热端部件的工程优选和设计优化提供了试验支撑。  相似文献   
407.
白波  李志刚  李军 《航空动力学报》2022,37(5):1042-1053
为有效评估轴向收敛造型对端壁气膜冷却性能的影响,数值研究了不同吹风比下,轴向收敛造型对跨声速燃气涡轮叶栅端壁上游双排离散孔绝热气膜冷却效率的影响。模拟某工业燃气涡轮真实运行工况(进口湍流度为16%、出口马赫数为0.85、出口雷诺数为1.5×106),采用基于“两类热边界条件”模型的壁面传热系数和绝热冷却效率数值预测方法,比较分析了3种吹风比(1.0、2.5、3.5)下,简化平板端壁结构和轴向收敛造型端壁结构的端壁热负荷分布、绝热气膜冷却效率分布和近端壁二次流场结构,以及端壁上游气膜孔射流对叶片表面的二次冷却作用(幻影冷却)。结果表明:轴向收敛造型可以削弱马蹄涡强度,降低端壁热负荷,尤其是叶片肩部区域;轴向收敛造型可以显著增加端壁气膜覆盖范围和绝热气膜冷却效率,尤其在叶片前缘和压力面等难以冷却区域;随吹风比增加,轴向收敛造型对端壁气膜冷却特性的影响效果先增加后减小,在设计吹风比为2.5时,轴向收敛造型对端壁绝热气膜冷却效率的增强效果最显著(增加约35%);轴向收敛造型显著增加叶片前缘和压力面幻影冷却面积,尤其是叶片前缘附近面积增加约100%(设计吹风比下,冷却区域达0.1倍叶高),可有效减小叶片冷却的冷气需求流量。轴对称收敛端壁造型是进一步提高燃气涡轮叶栅端壁绝热气膜冷却效率、减小冷气流量,实现端壁高效冷却布局的有效技术途径。   相似文献   
408.
国产HTPB复合推进剂裂纹扩展特性的实验研究   总被引:15,自引:4,他引:15       下载免费PDF全文
屈文忠 《推进技术》1994,15(6):88-92
依据Schapery R A^(1)的粘弹性断裂理论,对国产HTPB复合推进剂进行了I型裂纹扩展实验。分析了裂纹扩展的特性,表明裂纹扩展开始时存在临界应力强度因子KIc。得出该型推进剂裂扩展速率da/dt与应力强度因子K1间的幂函数关系式。讨论了该推进剂材料断裂能Г与裂纹扩展速率的关系。  相似文献   
409.
研究了30~60μm粗铝粉(球形,非球形)对丁羟推进剂主要性能的影响,并着重研究了粗铝粉的燃烧特性和能量特性,结果表明粗铝粉在推进剂中使用是可行的。  相似文献   
410.
查小晖  郑群  高杰  王威  于雷  刘鹏 《推进技术》2014,35(6):779-787
采用商用计算流体力学软件CFX,湍流模型采用标准k-w两方程湍流模型,叶型为单涡轮动叶叶片,应用数值模拟方法研究了弧形端壁造型对动叶泄漏流动及涡轮气动性能的影响。数值研究结果表明:适当优化的弧形端壁造型可以改善泄漏涡和通道涡作用状况、提高出口总压和改善气流角分布、降低叶顶间隙泄漏和提高效率。最优端壁造型可以减少间隙泄漏0.27%,提高效率0.77%。在变攻角下,最优端壁造型效率最高点出现在设计攻角下,但攻角变化越大,间隙泄漏流动越少。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号