首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   325篇
  免费   115篇
  国内免费   86篇
航空   309篇
航天技术   98篇
综合类   27篇
航天   92篇
  2024年   2篇
  2023年   17篇
  2022年   28篇
  2021年   24篇
  2020年   29篇
  2019年   27篇
  2018年   22篇
  2017年   14篇
  2016年   14篇
  2015年   13篇
  2014年   24篇
  2013年   28篇
  2012年   30篇
  2011年   30篇
  2010年   31篇
  2009年   17篇
  2008年   21篇
  2007年   21篇
  2006年   21篇
  2005年   13篇
  2004年   9篇
  2003年   13篇
  2002年   5篇
  2001年   6篇
  2000年   5篇
  1999年   8篇
  1998年   9篇
  1997年   9篇
  1996年   1篇
  1995年   7篇
  1994年   8篇
  1993年   4篇
  1992年   5篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1986年   1篇
排序方式: 共有526条查询结果,搜索用时 15 毫秒
411.
《中国航空学报》2021,34(2):601-611
This paper investigates the influence of crack orientation on damage quantification using Lamb wave in plate structures. Finite element simulation is performed to acquire Lamb wave signal responses for different configurations of crack orientations and crack lengths. Two Lamb wave features, namely the normalized amplitude and the phase change, are used as damage sensitive features to develop a crack size quantification model. A hypothesis based on the geometrical influence on signal features is proposed, and the crack size quantification model incorporating the orientation angle is established using the hypothesis. An index of Probability of Reliable Quantification (PRQ) is proposed to evaluate the performance of the model. The index can be used to determine the sizing risk in terms of probabilities. A realistic aluminum plate is used to obtain the experimental data using piezoelectric (PZT) wafer-type sensors around a center through crack. The experimental data are used to validate the overall method. Results indicate that the proposed model can yield reliable results for size quantification of inclined cracks.  相似文献   
412.
本文提出了边缘 Rao-Blackwellized 粒子滤波器(marginal Rao-Blackwellized particle filter, MRBPF)算法,算法融合了 Rao-Blackwellized 粒子滤波器(Rao-Blackwellized particle filter , RBPF)算法和边缘粒子滤波器(marginal particle filter, MPF)算法。算法中状态被分为线形和非线性两部分,分别用 MPF 和卡尔曼滤波器(Kalman Filter)进行估计。地形辅助导航(terrain aided navigation, TAN)的仿真结果表明,与 RBPF 相比,提出算法的非线性状态估计的误差均方根(root mean square error, RMSE)和误差方差分别降低了约 29%和 96%,独立粒子数提高了约80%,获得了更好的收敛结果。分析表明,现有RBPF是MRBPF的一个特例。  相似文献   
413.
在侧挂构型发射任务中,中心承力筒与卫星直接连接,其动力学特性对卫星的振动响应有直接影响。首先分析中心承力筒的模态特性,据此完成粒子阻尼器的结构参数设计。随后,使用有限元--离散元耦合仿真方法,确定了阻尼器填充粒子的最佳直径和阻尼器最佳安装位置。仿真结果表明,该方案下星箭界面减振效果可达40%。最后,使用最优粒子阻尼参数开展水平激励实验。实验结果表明,与未安装粒子阻尼器相比,中心承力筒+粒子阻尼器组合体的减振效果可达35%以上,与仿真结果一致。  相似文献   
414.
爆轰胞格尺寸作为可燃系统的本征值,可用来确定爆轰传播时的临界尺寸,比如直管传播时的临界管径、管道突扩时的临界尺寸等.然而,该尺寸的测量具有较强的主观性.为了减少人工测量带来的不确定性,文章采用两种统计方法:概率密度函数法和自相关函数法,对数值模拟得到的不同规则程度的爆轰胞格进行了统计分析.爆轰胞格的不规则程度采用单步反...  相似文献   
415.
二维静电孤立波的粒子模拟研究   总被引:1,自引:0,他引:1  
利用二维粒子模拟程序研究了双流不稳定性激发静电波并演化为静电孤立波的物理过程.计算结果表明,在线性增长阶段,主要激发的是沿磁场传播的静电波;在非线性演化阶段,相邻的静电波会互相合并,直至形成静电孤立波,并可激发静电哨声波.还研究了磁场强度和离子温度对此过程的影响.当磁场强度比较小时,无法形成静电孤立波,只有磁场强度达到一定程度后静电孤立波才能形成;同时,离子温度会影响静电孤立波的稳定性,当离子温度比较小时,静电孤立波的稳定性减弱,在演化一段时间后会逐渐瓦解.   相似文献   
416.
Precise pointing of the satellite and its payload is essential in the accurate accomplishment of a space mission. In this study, the system of a satellite and its payload are considered as 4-DOF equations of motion. The time-varying payload can observe one direction of the Earth independently, and the satellite can point to the Earth station by its 3-DOF motions simultaneously. Sliding mode and LQR controllers are designed for damping disturbances, and consequently high pointing accuracy. Environmental disturbances and the associated time delay of Low Earth Orbit (LEO) are applied to the system. An algorithm based on Particle Swarm Optimization (PSO) is proposed to find the optimum values of variables and Normalized Integral Square Error (NISE) of the two aforementioned controllers. Numerical simulations indicate the optimized magnitudes of target detection errors and control efforts in four directions. The results revealed that PSO-SMC can finely track the time-varying payload and has better efficiency in comparison with PSO-LQR.  相似文献   
417.
The elasticity-based Locally Exact Homogenization Theory (LEHT) is extended to study the mechanical-hygrothermal behaviors of unidirectionally-reinforced composites. Based on the framework developed previously, thermal and moisture effects are incorporated into the LEHT to study the homogenized and localized responses of heterogeneous materials, which are validated using available analytical and numerical techniques. The LEHT programs are then encapsulated as subroutines with Input/Output (I/O) interfaces, to be readily applied in different computational scenarios. In order to illustrate the efficiency of the LEHT, the theory is firstly coupled to the Particle Swarm Optimization (PSO) algorithm in order to minimize the axial thermal expansion mismatch in hexagonal and square fiber arrays by tailoring the fiber volume fraction. The LEHT is then implemented into the lamination theory to study fabrication-induced residual stresses arising during the cool-down process which introduces local laminate stresses owing to thermo-mechanical property mismatch between plies. Both of these applications illustrate the efficiency and accuracy of the LEHT in generating effective properties and local stress distributions, making the theory a golden standard in validating other analytical or numerical techniques as well as a reliable tool in composite design and practice for professionals and non-professionals alike.  相似文献   
418.
Electrohydrostatic actuator (EHA) is a type of power-by-wire actuator that is widely implemented in the aerospace industry for flight control, landing gears, thrust reversers, thrust vector control, and space robots. This paper presents the development and evaluation of position-based impedance control (PBIC) for an EHA. Impedance control provides the actuator with compliance and facilitates the interaction with the environment. Most impedance control applications utilize electrical or valve-controlled hydraulic actuators, whereas this work realizes impedance control via a compact and efficient EHA. The structures of the EHA and PBIC are firstly introduced. A mathematical model of the actuation system is established, and values of its coefficients are identified by particle swarm optimization. This model facilitates the development of a position controller and the selection of target impedance parameters. A nonlinear proportional-integral position controller is developed for the EHA to achieve the accurate positioning requirement of PBIC. The controller compensates for the adverse effect of stiction, and a position accuracy of 0.08 mm is attained. Various experimental results are presented to verify the applicability of PBIC to the EHA. The compliance of the actuator is demonstrated in an impact test.  相似文献   
419.
This paper researches the ascent guidance law for the vehicle with a multi-combined cycle propulsion. The guidance law comprises two parts, namely, the off-line optimal trajectories generation and online guidance. With respect to the off-line part, disturbances are discretized and incorporated into the trajectory optimization problem; subsequently, a set of trajectories is calculated to constitute a database. To quickly obtain a database that comprises a large number of trajectories, a novel ascent profile is proposed with respect to height and velocity. Based on this profile, only inequity constraints exist in the optimization model, and the original optimization problem is converted to a parameter searching problem. The optimal trajectories are calculated using a hybrid optimization method that comprises a particle swarm optimization (PSO) method and the Hooke-Jeeves (HJ) method. With respect to online guidance, the profile is updated using a radial basis function neural network (RBFNN) based on the current flight states and the database. Simulation validates the efficiency of the proposed optimization method by comparing the method with the pseudospectral method; the robustness of the guidance law is also validated using Monte Carlo simulation.  相似文献   
420.
A key requirement for accurate trajectory prediction and space situational awareness is knowledge of how non-conservative forces affect space object motion. These forces vary temporally and spatially, and are driven by the underlying behavior of space weather particularly in Low Earth Orbit (LEO). Existing trajectory prediction algorithms adjust space weather models based on calibration satellite observations. However, lack of sufficient data and mismodeling of non-conservative forces cause inaccuracies in space object motion prediction, especially for uncontrolled debris objects. The uncontrolled nature of debris objects makes them particularly sensitive to the variations in space weather. Our research takes advantage of this behavior by utilizing observations of debris objects to infer the space environment parameters influencing their motion.The hypothesis of this research is that it is possible to utilize debris objects as passive, indirect sensors of the space environment. We focus on estimating atmospheric density and its spatial variability to allow for more precise prediction of LEO object motion. The estimated density is parameterized as a grid of values, distributed by latitude and local sidereal time over a spherical shell encompassing Earth at a fixed altitude of 400 km. The position and velocity of each debris object are also estimated. A Partially Orthogonal Ensemble Kalman Filter (POEnKF) is used for assimilation of space object measurements to estimate density.For performance comparison, the scenario characteristics (number of objects, measurement cadence, etc.) are based on a sensor tasking campaign executed for the High Accuracy Satellite Drag Model project. The POEnKF analysis details spatial comparisons between the true and estimated density fields, and quantifies the improved accuracy in debris object motion predictions due to more accurate drag force models from density estimates. It is shown that there is an advantage to utilizing multiple debris objects instead of just one object. Although the work presented here explores the POEnKF performance when using information from only 16 debris objects, the research vision is to utilize information from all routinely observed debris objects. Overall, the filter demonstrates the ability to estimate density to within a threshold of accuracy dependent on measurement/sensor error. In the case of a geomagnetic storm, the filter is able to track the storm and provide more accurate density estimates than would be achieved using a simple exponential atmospheric density model or MSIS Atmospheric Model (when calm conditions are assumed).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号