首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   50篇
  国内免费   20篇
航空   100篇
航天技术   69篇
综合类   6篇
航天   84篇
  2024年   1篇
  2023年   8篇
  2022年   22篇
  2021年   9篇
  2020年   14篇
  2019年   10篇
  2018年   8篇
  2017年   3篇
  2016年   1篇
  2015年   4篇
  2014年   8篇
  2013年   8篇
  2012年   9篇
  2011年   7篇
  2010年   8篇
  2009年   14篇
  2008年   14篇
  2007年   17篇
  2006年   9篇
  2005年   15篇
  2004年   5篇
  2003年   5篇
  2002年   10篇
  2001年   4篇
  2000年   6篇
  1999年   10篇
  1998年   8篇
  1997年   9篇
  1996年   6篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
排序方式: 共有259条查询结果,搜索用时 15 毫秒
31.
为提高传统卫星姿态控制系统精度,提出了一种基于小脑模型(CMAC)神经网络的比例-积分-微分(PID)的复合控制器。给出了具在线学习功能的复合控制器结构,并证明了神经网络学习收敛条件与最终控制目标的一致性。仿真结果表明,设计的控制器具有较好的自适应性和鲁棒性。与传统控制器相比,进入稳定状态的速度更快,指向精度更高。  相似文献   
32.
基于动态逆和神经网络的机动弹头姿态控制系统设计   总被引:1,自引:0,他引:1  
王辉  黄万伟 《航天控制》2007,25(3):13-16
机动弹头是复杂的非线性系统,它给姿态控制系统设计人员以极大的挑战。为了满足飞行稳定性要求,提高系统的适应性和鲁棒性,本文构造了动态逆神经网络姿态控制系统,设计了慢变量和快变量动态逆,引入了在线神经网络进行逆误差的补偿。实例仿真的结果表明:动态逆和在线神经网络的结合,能够实现弹头的稳定飞行。  相似文献   
33.
BP神经网络理论在模型修正的应用   总被引:1,自引:0,他引:1  
神经网络由于其本身具有的优越性,已广泛应用于各个领域中的分类、联想问题。将神经网络理论用于对利用有限元分析方法得到的系统模型进行修正,从计算结果看,该方法收敛速度快且收敛到全局最优解。  相似文献   
34.
It is important to use models developed specifically for the equatorial ionospheric estimation for real-time applications, particularly in Satellite Navigation. This work demonstrates a methodology for improved predictions of VTEC in real time using the model developed for the equatorial ionosphere by the authors. This work has been done using TEC data of the low solar activity period of 2005 obtained using dual frequency GPS receivers installed under the GAGAN project of ISRO. For the purpose, the model is first used in conjunction with Kriging technique. Improvement in accuracy is observed when compared with the estimations from the model alone using the measurements as true reference. Further improvement is obtained by Bayesian combination of these estimates with independent Neural Network based predictions. Statistical performance of improvement is provided. An improvement of ∼1 m in confidence level of estimation of VTEC is obtained.  相似文献   
35.
During predation, a flying insect can form a stealth flight path. This behavior is called motion camouflage. Based on the study results of this behavior, the perception and neurology of flying insects, a novel bio-inspired guidance law is proposed for the terminal guidance for small aerial vehicle with charge-coupled device imaging seekers. The kinematics relationship between a small aerial vehicle and target is analyzed, and a two-dimensional guidance law model is established by using artificial neural networks. To compare with the proportional guidance law, the numerical simulations are carried out in the vertical plane and in the horizontal plane respectively. The simulation results show that the ballistic of the small aerial vehicle is straighter and the normal acceleration is smaller by using the bio-inspired guidance law than by using the proportional guidance law. That is to say, the bio-inspired guidance law just uses the information of the target from the imaging seeker,but the performance of it can be better than that of the proportional guidance law.  相似文献   
36.
应用神经网络模型评价社保基金运营效果方法研究   总被引:2,自引:2,他引:0  
社会保障基金是社会成员普遍关注的资金,他的利用关系到全社会成员的公共利益。因此,社会保障基金运用效果的评价问题一直是社会各界争论的焦点,正确评价其运用效果是值得学术界探讨的问题。运用神经网络模型对社会保障基金运用效果进行评价是对神经网络模型的应用及对社会保障基金运用效果的评价进行尝试和探讨。  相似文献   
37.
火箭发动机基于神经网络非线性辨识的故障检测   总被引:1,自引:0,他引:1  
应用神经网络方法,提出了一种液体火箭发动机故障实时检测算法。神经网络采用非线性辨识技术贴近发动机的工作过程,并输出包合发动机故障信息的辨识误差信号。若辨识误差变大超过一定阈值,检测逻辑就预报发动机故障。在发动机启动阶段离线训练神经网络,在发动机稳态过程可以采用离线或在线学习算法。实验研究表明神经网络可以成功地应用于大型泵压式液体火箭发动机的故障检测。  相似文献   
38.
In the last 20?years, and in particular in the last decade, the availability of propagation data for GNSS has increased substantially. In this sense, the ionosphere has been sounded with a large number of receivers that provide an enormous amount of ionospheric data. Moreover, the maturity of the models has also been increased in the same period of time. As an example, IGS has ionospheric maps from GNSS data back to 1998, which would allow for the correlation of these data with other quantities relevant for the user and space weather (such as Solar Flux and Kp). These large datasets would account for almost half a billion points to be analyzed. With the advent and explosion of Big Data algorithms to analyze large databases and find correlations with different kinds of data, and the availability of open source code libraries (for example, the TensorFlow libraries from Google that are used in this paper), the possibility of merging these two worlds has been widely opened. In this paper, a proof of concept for a single frequency correction algorithm based in GNSS GIM vTEC and Fully Connected Neural Networks is provided. Different Neural Network architectures have been tested, including shallow (one hidden layer) and deep (up to five hidden layers) Neural Network models. The error in training data of such models ranges from 50% to 1% depending on the architecture used. Moreover, it is shown that by adjusting a Neural Network with data from 2005 to 2009 but tested with data from 2016 to 2017, Neural Network models could be suitable for the forecast of vTEC for single frequency users. The results indicate that this kind of model can be used in combination with the Galileo Signal-in-Space (SiS) NeQuick G parameters. This combination provides a broadcast model with equivalent performances to NeQuick G and better than GPS ICA for the years 2016 and 2017, showing a 3D position Root Mean Squared (RMS) error of approximately 2?m.  相似文献   
39.
Recently, the high rate global navigation satellite system-precise point positioning (GNSS-PPP) technique has been used to detect the dynamic behavior of structures. This study aimed to increase the accuracy of the extraction oscillation properties of structural movements based on the high-rate (10?Hz) GNSS-PPP monitoring technique. A developmental model based on the combination of wavelet package transformation (WPT) de-noising and neural network prediction (NN) was proposed to improve the dynamic behavior of structures for GNSS-PPP method. A complicated numerical simulation involving highly noisy data and 13 experimental cases with different loads were utilized to confirm the efficiency of the proposed model design and the monitoring technique in detecting the dynamic behavior of structures. The results revealed that, when combined with the proposed model, GNSS-PPP method can be used to accurately detect the dynamic behavior of engineering structures as an alternative to relative GNSS method.  相似文献   
40.
The problem of controlling an all-thruster spacecraft in the coupled translational-rotational motion in presence of actuators fault and/or failure is investigated in this paper. The nonlinear model predictive control approach is used because of its ability to predict the future behavior of the system. The fault/failure of the thrusters changes the mapping between the commanded forces to the thrusters and actual force/torque generated by the thruster system. Thus, the basic six degree-of-freedom kinetic equations are separated from this mapping and a set of neural networks are trained off-line to learn the kinetic equations. Then, two neural networks are attached to these trained networks in order to learn the thruster commands to force/torque mappings on-line. Different off-nominal conditions are modeled so that neural networks can detect any failure and fault, including scale factor and misalignment of thrusters. A simple model of the spacecraft relative motion is used in MPC to decrease the computational burden. However, a precise model by the means of orbit propagation including different types of perturbation is utilized to evaluate the usefulness of the proposed approach in actual conditions. The numerical simulation shows that this method can successfully control the all-thruster spacecraft with ON-OFF thrusters in different combinations of thruster fault and/or failure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号