首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1119篇
  免费   147篇
  国内免费   386篇
航空   955篇
航天技术   313篇
综合类   171篇
航天   213篇
  2024年   6篇
  2023年   24篇
  2022年   44篇
  2021年   70篇
  2020年   61篇
  2019年   50篇
  2018年   61篇
  2017年   84篇
  2016年   81篇
  2015年   66篇
  2014年   94篇
  2013年   76篇
  2012年   72篇
  2011年   98篇
  2010年   65篇
  2009年   85篇
  2008年   74篇
  2007年   58篇
  2006年   55篇
  2005年   55篇
  2004年   45篇
  2003年   39篇
  2002年   28篇
  2001年   27篇
  2000年   33篇
  1999年   20篇
  1998年   27篇
  1997年   28篇
  1996年   24篇
  1995年   19篇
  1994年   16篇
  1993年   19篇
  1992年   15篇
  1991年   8篇
  1990年   9篇
  1989年   9篇
  1988年   5篇
  1984年   2篇
排序方式: 共有1652条查询结果,搜索用时 31 毫秒
961.
GA-Based Model Predictive Control of Semi-Active Landing Gear   总被引:1,自引:1,他引:0  
Semi-active landing gear can provide good performance of both landing impact and taxi situation, and has the ability for adapting to various ground conditions and operational conditions. A kind of Nonlinear Model Predictive Control algorithm (NMPC) for semi-active landing gears is developed in this paper. The NMPC algorithm uses Genetic Algorithm (GA) as the optimization technique and chooses damping performance of landing gear at touch down to be the optimization object. The valve's rate and magnitude limitations are also considered in the controller's design. A simulation model is built for the semi-active landing gear's damping process at touchdown. Drop tests are carried out on an experimental passive landing gear systerm to validate the parameters of the simulation model. The result of numerical simulation shows that the isolation of impact load at touchdown can be significantly improved compared to other control algorithms. The strongly nonlinear dynamics of semi-active landing gear coupled with control valve's rate and magnitude limitations are handled well with the proposed controller.  相似文献   
962.
航天器着陆缓冲机构是开展地外天体着陆探测的核心装置,其着陆性能直接关系到整个探测任务的成败。本文梳理并总结了现有航天器着陆缓冲机构的相关设计技术,重点介绍了航天器着陆缓冲方法、机构构型和地外小天体着陆/锚定机构,并对其优缺点和适用情况进行了总结分析。其次,针对各类着陆缓冲机构总结了动力学分析技术现状,对比了理论解析模型法、全机刚体仿真分析法、刚柔耦合仿真分析法、全机柔性仿真分析法和半主动控制仿真法等动力学分析方法的优劣。再次,论述了地面等效试验技术的研究进展,阐述了滑轮平衡法、斜坡模拟法和全机1/6尺寸模型法3种地面等效试验方法的主要特点。最后,结合未来深空探测需求,对航天器着陆技术存在的问题、及发展趋势进行了总结与展望。  相似文献   
963.
A way to improve the accuracy of the three-body problem model is taking into account the eccentricity of primary attractors. Elliptic Restricted Three-Body Problem (ER3BP) is a model for studying spacecraft trajectory within the three-body problem such that the orbital eccentricity of primaries is reflected in it. As the principal cause of perturbation in the employed dynamical model, the primaries eccentricity changes the structure of orbits compared to the ideal Circular Restricted Three-Body Problem (CR3BP). It also changes the attitude behavior of a spacecraft revolving along periodic orbits in this regime. In this paper, the coupled orbit-attitude dynamics of a spacecraft in the ER3BP are exploited to find precise periodic solutions as the spacecraft is considered to be in planar orbits around Lagrangian points and Distant Retrograde Orbits (DRO). Periodic solutions are repetitious behaviors in which spacecraft whole dynamics are repeated periodically, these periodic behaviors are the main interest of this study because they are beneficial for future mission designs and allow delineation of the system’s governing dynamics. Previous studies laid the foundation for spacecraft stability analysis or studying pitch motion of spacecraft in the ER3BP regime. While in this paper, at first, initial guesses for correction algorithms were derived through verified search methods, then correction algorithms were used to refine calculated orbit-attitude periodic behaviors. Periodic orbits and full periodic solutions are portrayed and compared to previous studies and simpler models. Natural periodic solutions are valuable information eventuate in the longer functional lifetime of spacecraft. Since the problem assumption considered in this paper is much closer to real mission conditions, these results may be the means to use natural bounded motions in the actual operational environment.  相似文献   
964.
《中国航空学报》2020,33(8):2133-2145
The spaceplane is perspective vehicle due to wide maneuverability in comparison with a space capsule. Its maneuverability is expressed by the larger flight range and also by a possibility to rotate orbital inclination in the atmosphere by the aerodynamic and thrust forces. Orbital plane atmospheric rotation maneuvers can significantly reduce fuel costs compared to rocket-dynamic non-coplanar maneuver. However, this maneuver occurs at Mach numbers about 25, and such velocities lead to non-equilibrium chemical reactions in the shock wave. Such reactions change a physicochemical air property, and it affects aerodynamic coefficients. This paper investigates the influence of non-equilibrium reactions on the aerothrust aeroassisted maneuver with orbital change. The approach is to solve an optimization problem using the differential evolution algorithm with a temperature limitation. The spaceplane aerodynamic coefficients are determined by the numerical solution of the Reynolds-averaged Navier-Stokes equations. The aerodynamic calculations are conducted for the cases of perfect and non-equilibrium gases. A comparison of optimal trajectories, control laws, and fuel costs is made between models of perfect and non-equilibrium gases. The effect of a chemically reacting gas on the finite parameters is also evaluated using control laws obtained for a perfect gas.  相似文献   
965.
《中国航空学报》2020,33(9):2342-2356
Uncertainty is extensively involved in the rotor systems of rotating machinery, which may cause an unstable vibrational response. To take the uncertainty into consideration for the uncertain rotor-bearing system, an improved unified interval analysis method based on the Chebyshev expansion is established in this paper. Firstly, the Chebyshev Interval Method (CIM) to calculate not only the critical speeds but also the dynamic response of rotor with uncertain parameters is introduced. Then, the numerical investigation is carried out based on the developed double disk rotor model and computation procedure, and the results demonstrate the validity. But when the uncertainty is sufficiently large to influence critical speeds, the upper and lower bounds are far from the actual bounds. In order to overcome the defects, a Bound Correction Interval analysis Method (BCIM) is proposed based on the Chebyshev expansion and the modal superposition. In use of the improved method, the bounds of the interval responses, especially the upper bound, are corrected, and the comparison with other methods demonstrates that the higher accuracy and a wider application range.  相似文献   
966.
Stops along taxi trajectories, such as picking up and dropping off passengers, are spatially clustered and related to certain attributes of places where stops are made. To detect the hidden knowledge regarding these places, this article examines the semantics of massive taxi stops in a large city. Each taxi trajectory is modeled as a series of sequential semantic stops labeled by street names. All the trajectories can be examined as a document corpus, from which the hidden themes of the stops are identified through Latent Dirichlet Allocation model. Conventional GIS tools are coupled with topic modeling toolkit to visualize and analyze potential information of stop topics for understanding intra-city dynamics. The effectiveness of this approach is illustrated by a case study using a large dataset of taxi trajectories including approximately 4,000 taxis in Wuhan, China.  相似文献   
967.
The aerodynamic layout of the Canard Rotor/Wing(CRW) aircraft in helicopter flight mode differs significantly from that of conventional helicopters. In order to study the flight dynamics characteristics of CRW aircraft in helicopter mode, first, the aerodynamic model of the main rotor system is established based on the blade element theory and wind tunnel test results. The aerodynamic forces and moments of the canard wing, horizontal tail, vertical tail and fuselage are obtained via theoretical analysis and empirical formula. The flight dynamics model of the CRW aircraft in helicopter mode is developed and validated by flight test data. Next, a method of model trimming using an optimization algorithm is proposed. The flight dynamics characteristics of the CRW are investigated by the method of linearized small perturbations via Simulink. The trim results are consistent with the conventional helicopter characteristics, and the results show that with increasing forward flight speed, the canard wing and horizontal tail can provide considerable lift,which reflects the unique characteristics of the CRW aircraft. Finally, mode analysis is implemented for the linearized CRW in helicopter mode. The results demonstrate that the stability of majority modes increases with increasing flight speed. However, one mode that diverges monotonously,and the reason is that the CRW helicopter mode has a large vertical tail compared to the conventional helicopter. The results of the dynamic analysis provide optimization guidance and reference for the overall design of the CRW aircraft in helicopter mode, and the model developed can be used for control system design.  相似文献   
968.
High-fidelity cargo airdrop simulation requires the contact dynamics between an aircraft and a cargo to be modeled accurately. This paper presents a general and efficient contact-friction model for simulation of aircraft-cargo coupling dynamics during airdrops. The proposed approach has the same essence as that of the finite element node-to-segment contact formulation, which leads to a flexible, straight forward, and efficient code implementation. The formulation is developed under an arbitrary moving frame with both the aircraft and the cargo being treated as general six-degree-of-freedom rigid bodies, and thus it eliminates the restrictions of lateral symmetric assumptions in most existing methods. Moreover, the aircraft-cargo coupling algorithm is discussed in detail, and some practical implementation details are presented. The accuracy and capability of the present method are demonstrated through three numerical examples with increasing complexity and fidelity.  相似文献   
969.
For spacecraft hovering in low orbit, a high precision spacecraft relative dynamics model without any simplification and considering J2 perturbation is established in this paper. Using the derived model, open-loop control and closed-loop control are proposed respectively. Gauss's variation equations and the coordinate transformation method are combined to deal with the relative J2 perturbation between the two spacecraft. The sliding mode controller is adopted as the closed-loop controller for spacecraft hovering. To improve the control accuracy, the relative J2 perturbation is regarded as a known parameter term in the closed-loop controller. The external uncertainty perturbations except J2 perturbation are estimated by numerical difference method, and the boundary layer method is used to weaken the impact of chattering on the sliding mode controller. The open-loop control of spacecraft hovering with the relative J2 perturbation and without the relative J2 perturbation are simulated and compared, and the results prove that the accuracy of open-loop control with relative J2 perturbation has been significantly improved. Similarly, the simulation of the closed-loop control are presented to validate the effectiveness of the designed sliding mode controller, and the results demonstrate that the designed sliding mode controller including the derived relative J2 perturbation can guarantee the high accuracy and robustness of spacecraft hovering in long-term mission.  相似文献   
970.
Strong shock waves and flow separation often occur during the integration of nacelle and airframe for blended-wing-bodies with podded engines. To address this problem, this paper presents an integration method with numerical simulations. The philosophy of channeling flow and avoiding the throat effect on the nacelle and airframe is established based on the analysis of flow interference in the initial configuration. A parametric integration design method is proposed from twodimensional plane to three-dimensional space with control mechanisms and selection principles of the key parameters determined by their influences. Results show that strong shock waves and flow separation can be successfully eliminated under the influence of both the reshaped channel and decelerated inflow below the nacelle. Supersonic regions around the nacelle are effectively reduced, concentrating mainly on the lip position. Thus, a significant cruise drag reduction(8.7%) is achieved though the pressure drag of the nacelle increases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号