首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   391篇
  免费   67篇
  国内免费   17篇
航空   106篇
航天技术   273篇
综合类   18篇
航天   78篇
  2023年   8篇
  2022年   9篇
  2021年   8篇
  2020年   20篇
  2019年   18篇
  2018年   19篇
  2017年   9篇
  2016年   7篇
  2015年   12篇
  2014年   21篇
  2013年   27篇
  2012年   27篇
  2011年   33篇
  2010年   21篇
  2009年   25篇
  2008年   37篇
  2007年   24篇
  2006年   17篇
  2005年   23篇
  2004年   17篇
  2003年   7篇
  2002年   8篇
  2001年   14篇
  2000年   13篇
  1999年   6篇
  1998年   5篇
  1997年   4篇
  1996年   5篇
  1995年   8篇
  1994年   11篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
排序方式: 共有475条查询结果,搜索用时 203 毫秒
421.
We report successful levitation of large water droplets and mice using a newly built variable gravity simulator. The simulator consists mainly of a superconducting magnet with a room temperature accessible experimental levitating space. The superconducting magnet generates a field and field gradient product that is large enough to levitate water and many other common liquids. The warm bore of the magnet has a diameter of 66 mm, large enough to levitate small mammals. We demonstrate that water drops up to 50 mm in diameter and young mice can be levitated in the system. The capability of levitating large water drops and biological systems offers new opportunities for conducting detailed and in-depth study of properties of fluids and biological systems in reduced gravity environments.  相似文献   
422.
The systematic investigation of the three components of the magnetic field is made on 6629 vector magnetograms obtained with the Solar Magnetic Field Telescope at Huairou Solar Observing Station over 18 years 1988–2005. The sign distribution of these values has been analyzed over the solar hemispheres and the solar activity cycle as follows:  相似文献   
423.
Differences in the external part of the vertical geomagnetic component point to the existence of local inhomogeneities in the magnetosphere or the ionosphere. Usually used magnetic indices are not sufficient to express the state of ionosphere, the common used global Kp index derived in the three-hour interval does not indicate much more rapidly changes appearing in ionosphere. Magnetic index η reflects ionospheric disturbances when other indices show very quiet conditions. Data of ionospheric characteristics (foE, foEs, h’E, h’F2) during 28-day long quiet day conditions (Kp = 0–2) in 2004 were analyzed. The correlations between strong local disturbances in ionosphere during very quiet days and high values of magnetic index η were found. The most sensitive to magnetic influence – ionospheric E layer data (foE characteristic) – reaches median deviations up to (+0.8 MHz and −0.8 MHz) during very low magnetic activity (Kp = 0–1). The high peaks (2–2.7) of the magnetic index η correlate in time with large local median deviations of foE. Such local deviations can suggest local inhomogeneities (vertical drifts) in the ionosphere. The correlation in space is not trivial. The strong peak of η is situated between the positive and negative deviations of foE. Additional observation is connected with correlation in time of the high η value with the negative median deviations of h’F2 (in some cases up to −90 km). The analysis was based on one-minute data recorded at each of 20 European Magnetic Observatories working in the INTERMAGNET network and from 19 ionosondes for 2004. Ionospheric data are sparse in time and in space in opposite to the magnetic data. The map of the magnetic indices can suggest the behavior of ionospheric characteristics in the areas where we have no data.  相似文献   
424.
The nature of a magnetic element, the elemental structure of the solar magnetic field, is one of the most important mysteries in solar physics. In this paper, we will discuss the requirements of magnetic element detection, such as spatial resolution and magnetic sensitivity. By these discussions, we conclude that it is almost impossible to detect magnetic element with currently used ground-based telescopes and techniques. The proposed Space Solar Telescope, a one-meter Chinese space project, can match these requirements.  相似文献   
425.
The aggregates formed in low gravity are generally fractals. The fractal dimensions and the site growth probability measures of the resulting fractal structures strongly depend on the properties of the forces that cause the aggregation. Using some approximations, we solved the equation of motion and obtained the relation giving the particles separation as a function of time. The electric force between two charged particles and the magnetic force between two particles with a magnetic moment were considered. The two relations are different and it is shown that one can identify and separate these two interactions by analysing the recording of the aggregation. The apparatus used to record the aggregation has a resolution in the order of one micrometer per pixel and has the possibility of recording simultaneously two views at right angles. From a three dimensional recording of an aggregation, it will be possible to obtain the product of the two charges or magnetic moments causing the aggregation.  相似文献   
426.
Temporal variations of the radiation belt particle during the magnetic storms are investigated using measurements by the low altitude satellite spectrometer. Along with several known effects, such as the outer radiation belt intensity decrease at the main phase, the radial diffusion with the particle acceleration and the recovery of the radiation belt during the recovery phase, some less known features were investigated, such as the dawn–dusk asymmetry of the radiation belt.  相似文献   
427.
We study the short-term topological changes of equatorial and polar coronal hole (CH) boundaries, such as a variation of their area and disintegration, associated to reconnection with nearby (within 15° distance) quiescent prominence magnetic fields leading to eruptions and subsequent Coronal Mass Ejections (CMEs). The examples presented here correspond to the recent solar minimum years 2008 and 2009. We consider a temporal window of one day between the CH topological changes and the start and end times of prominence eruptions and onset of CMEs. To establish this association we took into account observational conditions related to the instability of prominence/filaments, the occurrence of a CME, as well as the subsequent evolution after the CME. We found an association between short-term local topological changes in CH boundaries and the formation/disappearance of bright points near them, as well as, between short-term topological changes within the whole CH and eruptions of nearby quiescent prominences followed by the appearance of one or more CMEs.  相似文献   
428.
基于嫦娥一号高能粒子数据的地球磁层屏蔽效应研究   总被引:1,自引:0,他引:1  
月球绕地球运行轨道约有1/4位于地球磁层内,因此,地球磁层是否会为月球轨道附近高能粒子提供足够的磁场屏蔽对于探索月球活动具有重要影响.嫦娥一号是中国首颗绕月人造卫星,其绕月飞行的工作轨道距离月球表面200 km.通过对嫦娥一号高能粒子探测器(HPD)的探测数据进行分析,比较了当月球位于地球磁层内外6个不同能道(能量范围4~400 MeV)时质子通量的变化,发现当月球位于地球磁层内时,这些能道的质子通量并没有发生显著减少,结果表明地球磁层不能为月球轨道附近高能粒子提供显著的磁屏蔽.  相似文献   
429.
We compute global magnetospheric parameters based upon solar wind data obtained from the WIND spacecraft upstream. Using the paraboloid magnetospheric model, calculations of the dynamic global magnetospheric current systems have been made. The solar wind dynamic pressure, the interplanetary magnetic field, the strength of the tail current, and the ring current control the polar cap and auroral oval size and location during the magnetic storm. The model calculations demonstrate that the polar cap and the auroral oval areas are mainly controlled by the tail current. The substorm onset at 0630 UT on September 25, 1998 happened near the minimum in the main phase field depression. The substorm expansion onset time is also marked by a sudden enhancement in the solar wind dynamic pressure and an enhancement in the tail current. The magnetic signatures of these two effects cancel each other, which explains why the Dst profile shows no strong time variation during the substorm. Evidence for the substorm expansion includes not only the signature in the AL index but also the strong asymmetry of the low latitude magnetic disturbances (substorm positive bay signature). Model calculations were checked by comparison with the GOES 8 and 10 magnetic field measurements.  相似文献   
430.
The Magnetometer (MAG) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission is a low-noise, tri-axial, fluxgate instrument with its sensor mounted on a 3.6-m-long boom. The boom was deployed on March 8, 2005. The primary MAG science objectives are to determine the structure of Mercury’s intrinsic magnetic field and infer its origin. Mariner 10 observations indicate a planetary moment in the range 170 to 350 nT R M3 (where R M is Mercury’s mean radius). The uncertainties in the dipole moment are associated with the Mariner 10 trajectory and variability of the measured field. By orbiting Mercury, MESSENGER will significantly improve the determination of dipole and higher-order moments. The latter are essential to understanding the thermal history of the planet. MAG has a coarse range, ±51,300 nT full scale (1.6-nT resolution), for pre-flight testing, and a fine range, ±1,530 nT full scale (0.047-nT resolution), for Mercury operation. A magnetic cleanliness program was followed to minimize variable and static spacecraft-generated fields at the sensor. Observations during and after boom deployment indicate that the fixed residual field is less than a few nT at the location of the sensor, and initial observations indicate that the variable field is below 0.05 nT at least above about 3 Hz. Analog signals from the three axes are low-pass filtered (10-Hz cutoff) and sampled simultaneously by three 20-bit analog-to-digital converters every 50 ms. To accommodate variable telemetry rates, MAG provides 11 output rates from 0.01 s−1 to 20 s−1. Continuous measurement of fluctuations is provided with a digital 1–10 Hz bandpass filter. This fluctuation level is used to trigger high-time-resolution sampling in eight-minute segments to record events of interest when continuous high-rate sampling is not possible. The MAG instrument will provide accurate characterization of the intrinsic planetary field, magnetospheric structure, and dynamics of Mercury’s solar wind interaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号