首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   762篇
  免费   117篇
  国内免费   52篇
航空   321篇
航天技术   360篇
综合类   66篇
航天   184篇
  2024年   3篇
  2023年   15篇
  2022年   18篇
  2021年   14篇
  2020年   28篇
  2019年   37篇
  2018年   30篇
  2017年   30篇
  2016年   22篇
  2015年   30篇
  2014年   44篇
  2013年   37篇
  2012年   54篇
  2011年   74篇
  2010年   40篇
  2009年   48篇
  2008年   50篇
  2007年   35篇
  2006年   36篇
  2005年   34篇
  2004年   35篇
  2003年   19篇
  2002年   25篇
  2001年   32篇
  2000年   25篇
  1999年   14篇
  1998年   17篇
  1997年   6篇
  1996年   9篇
  1995年   16篇
  1994年   12篇
  1993年   12篇
  1992年   5篇
  1991年   6篇
  1990年   3篇
  1989年   8篇
  1988年   4篇
  1987年   3篇
  1986年   1篇
排序方式: 共有931条查询结果,搜索用时 15 毫秒
831.
In this paper I discuss the lack of observational evidence that magnetars are formed as rapidly rotating neutron stars. Supernova remnants containing magnetars do not show the excess of kinetic energy expected for such a formation scenario, nor is there any evidence for a relic pulsar wind nebula. However, it could be that magnetars are formed with somewhat slower rotation periods, or that not all excess rotational energy was used to boost the explosion energy, for example as a result of gravitational radiation. Another observational tests for the rapid initial period hypothesis is to look for statistical evidence that about 1% of the observed supernovae have an additional 1040–1044 erg/s excess energy during the first year, caused by the spin down luminosity of a magnetar.  相似文献   
832.
为了设计一种适用于小功率离子推力器的小功率正高压屏栅电源,本文提出了一种前级降压斩波电路后级全桥LLC谐振及全波倍压整流的两级式拓扑结构。在该主电路的基础上,设计了控制电路,并开展了试验研究。试验结果表明:设计的正高压屏栅电源在输入电压42 V、输出负载12.52 kΩ时,输出电压和输出功率分别为1050 V、88 W,且输出电压误差范围控制在2%以内,屏栅电源效率为90.44%。对于输出正负极高压短路、瞬时加减载具有自恢复功能。研究证明了该两级式拓扑结构的可行性,从而提供了一种小功率正高压屏栅电源的设计方法,对小功率离子推力器的发展具有推动作用。  相似文献   
833.
本文设计了一种单恒流源电流频率转换电路,使电路的功耗减小一半,更加小型化,并且具有更好的对称性和精度.提出并从原理上论证了这种单恒流源I/F技术的理论依据,设计出相应的硬件电路,验证其原理的正确性和工程上的可行性.为单恒流源I/F技术的研发,拓展了思路,奠定了基础.  相似文献   
834.
Asymmetrical spin stabilized satellite dynamics in the vicinity of the required motion is considered. The principal axis of the maximum moment of inertia slightly deviates from its assumed direction in the satellite reference frame. This is formalized in the cross products of inertia. This inertial uncertainty results in a wobble, that is undesired angular velocity components perpendicular to the rotation axis, and oscillations of this axis near the required direction. The torque-free motion is investigated first. Expressions that explicitly relate satellite inertia parameters to wobble are provided. Wobble evolution under the action of magnetic damping control is analyzed next. Its amplitude approximate exponential decay behavior and residual unavoidable wobble level are derived. These expressions are compared with numerical simulation results of nonlinear equations of motion including various disturbance sources.  相似文献   
835.
The relationship of auroral activity indices (AE, Kp, SME) with interplanetary medium parameters during the main phase of magnetic storms is studied. For the period 1990–2020, 142 magnetic storms driven by (41) Sheath, (61) CIR, and (40) ICME events are selected. It is found that the correlation coefficient between average values of the SME index and the SW electric field for Sheath (r = 0.75) is close to correlation coefficients for CIR and ICME events. The correlation coefficient between Kpaver&Eswaver (r = 0.72) is higher than the correlation coefficient between AEaver&Eswaver (r = 0.63) at the main phase of magnetic storms induced by the Sheath events. It is shown that average values of SW dynamic pressure and IMF σB fluctuations correlate each other for all types of SW.  相似文献   
836.
The variations in the horizontal and declination components of the geomagnetic field in response to the interplanetary shocks driven by fast halo coronal mass ejections, fast solar wind streams from the coronal hole regions and the dynamic pressure pulses associated with these events are studied. Close association between the field-aligned current density (j) and the fluctuations in the declination component (ΔDABG) at Alibag is found for intense storm conditions. Increase in the dawn-dusk interplanetary electric field (Ey) and ΔDABG are generally in phase. However, when the magnetospheric electric field is directed from dusk to dawn direction, a prominent scatter occurs between the two. It is suggested that low-latitude ground magnetic data may serve as a proxy for the interplanetary conditions in the solar wind.  相似文献   
837.
838.
Nowadays, nano- and micro-satellites, which are smaller than conventional large satellites, provide access to space to many satellite developers, and they are attracting interest as an application of space development because development is possible over shorter time period at a lower cost. In most of these nano- and micro-satellite missions, the satellites generally must meet strict attitude requirements for obtaining scientific data under strict constraints of power consumption, space, and weight. In many satellite missions, the jitter of a reaction wheel degrades the performance of the mission detectors and attitude sensors; therefore, jitter should be controlled or isolated to reduce its effect on sensor devices. In conventional standard-sized satellites, tip-tilt mirrors (TTMs) and isolators are used for controlling or isolating the vibrations from reaction wheels; however, it is difficult to use these devices for nano- and micro-satellite missions under the strict power, space, and mass constraints. In this research, the jitter of reaction wheels is reduced by using accurate sensors, small reaction wheels, and slow rotation frequency reaction wheel instead of TTMs and isolators. The objective of a reaction wheel in many satellite missions is the management of the satellite’s angular momentum, which increases because of attitude disturbances. If the magnitude of the disturbance is reduced in orbit or on the ground, the magnitude of the angular momentum that the reaction wheels gain from attitude disturbances in orbit becomes smaller; therefore, satellites can stabilize their attitude using only smaller reaction wheels or slow rotation speed, which cause relatively smaller vibration. In nano- and micro-satellite missions, the dominant attitude disturbance is a magnetic torque, which can be cancelled by using magnetic actuators. With the magnetic compensation, the satellite reduces the angular momentum that the reaction wheels gain, and therefore, satellites do not require large reaction wheels and higher rotation speed, which cause jitter. As a result, the satellite can reduce the effect of jitter without using conventional isolators and TTMs. Hence, the satellites can achieve precise attitude control under low power, space, and mass constraints using this proposed method. Through the example of an astronomical observation mission using nano- and micro-satellites, it is demonstrated that the jitter reduction using small reaction wheels is feasible in nano- and micro-satellites.  相似文献   
839.
840.
We report successful levitation of large water droplets and mice using a newly built variable gravity simulator. The simulator consists mainly of a superconducting magnet with a room temperature accessible experimental levitating space. The superconducting magnet generates a field and field gradient product that is large enough to levitate water and many other common liquids. The warm bore of the magnet has a diameter of 66 mm, large enough to levitate small mammals. We demonstrate that water drops up to 50 mm in diameter and young mice can be levitated in the system. The capability of levitating large water drops and biological systems offers new opportunities for conducting detailed and in-depth study of properties of fluids and biological systems in reduced gravity environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号