首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   870篇
  免费   150篇
  国内免费   402篇
航空   1135篇
航天技术   122篇
综合类   123篇
航天   42篇
  2024年   2篇
  2023年   16篇
  2022年   27篇
  2021年   61篇
  2020年   32篇
  2019年   38篇
  2018年   42篇
  2017年   60篇
  2016年   43篇
  2015年   35篇
  2014年   80篇
  2013年   53篇
  2012年   56篇
  2011年   72篇
  2010年   41篇
  2009年   63篇
  2008年   67篇
  2007年   57篇
  2006年   53篇
  2005年   46篇
  2004年   36篇
  2003年   48篇
  2002年   40篇
  2001年   34篇
  2000年   28篇
  1999年   22篇
  1998年   31篇
  1997年   23篇
  1996年   27篇
  1995年   20篇
  1994年   39篇
  1993年   24篇
  1992年   22篇
  1991年   35篇
  1990年   21篇
  1989年   13篇
  1988年   14篇
  1987年   1篇
排序方式: 共有1422条查询结果,搜索用时 281 毫秒
371.
某型钛铝合金航空发动机叶片高温高周振动疲劳实验   总被引:1,自引:2,他引:1  
以某型钛铝合金航空发动机叶片为研究对象,针对该型叶片高温高周振动疲劳实验时遇到的高温疲劳应力监测、高频激励等问题进行了实验方法研究。采用闭环控制最大应力的方法解决了高温疲劳应力的监测,通过夹具放大设计实现了高频激励,利用辐射加热和电磁振动台完成了温度载荷和振动载荷的综合施加。运用所述的高温高周振动疲劳实验方法,对该型叶片进行了寿命实验。实验的高温疲劳应力控制精度优于±2%,得到该型叶片可靠度为50%的中值疲劳极限是444 MPa,并有效获得了其寿命曲线。该实验方法适合航空发动机叶片高温高周振动疲劳实验,并可为其他航空发动机零部件高温高周疲劳实验提供参考。  相似文献   
372.
通过DD6单晶薄壁管试样机械应变控制热机械疲劳(TMF)试验,获取温度交变、相位角以及载荷控制方式对单晶应力应变响应与疲劳寿命的影响规律。结果表明:温度交变会引起明显的应力不对称性并造成额外损伤,导致TMF寿命明显低于最高循环温度的等温疲劳(IF)寿命,并且反相(OP)循环寿命普遍要低于同等载荷的同相(IP)循环,这种寿命变化趋势与应力控制存在明显差异。采用Walker本构模型进行单晶材料在不同TMF循环下的滑移系黏塑性分析,构建单晶TMF损伤与滑移系细观应力应变参量的关联。在此基础上,选取最大Schmid应力、最大滑移剪应变率、滑移剪应变范围、循环Schmid应力比作为损伤参量,建立基于细观参量的TMF寿命模型,其对不同相位、不同载荷控制方式的TMF寿命预测精度均在2倍分散带内。   相似文献   
373.
针对风扇/压气机叶片中叶盆/叶背遭受的硬物损伤(FOD)凹坑型损伤,进行了不同冲击角度下模拟FOD试验、损伤特征与应力集中分析,开展了冲击后不处理和冲击后去残余应力退火试样的高循环疲劳试验研究和疲劳强度的预测。结果表明:损伤深度和应力集中系数均随着冲击角度的增加而变大,损伤深度范围为0.1~0.5mm,应力集中系数范围为1.3~1.7。不同冲击角度条件下,凹坑型损伤试样疲劳强度相对光滑试样下降程度在50%~70%范围内,与应力集中系数并不是呈单调下降关系,最危险冲击角为60°。去残余应力退火后凹坑型损伤试样的高循环疲劳(HCF)性能有所提高,表明残余应力的影响程度不容忽略。去残余应力试样的HCF性能并不是随应力集中系数的增大而下降,验证了微结构损伤的影响,说明损伤深度作为制定可用极限或维修极限的唯一参量具有一定的局限性。对凹坑型损伤试样的疲劳强度的预测误差在±20%以内。   相似文献   
374.
以型号为RA8008UUCC0对数修形的薄壁交叉圆柱滚子轴承为分析对象,借助RomaxDesigner软件对比分析在联合载荷作用下径向工作游隙对承载滚子数、滚子最大载荷、滚道应力分布、轴承刚度、最小油膜厚度和疲劳寿命的影响情况,得出径向工作游隙是影响轴承力学性能的关键因素,结果表明:轴承受载滚子数随游隙的减小而增多,滚子与滚道接触应力分布趋于均匀化,相同条件下,倾覆力矩的影响比较显著。联合载荷作用下,随着工作游隙的减小,轴承刚度增大。当径向工作游隙小于-0.002mm时,随着径向工作游隙绝对值的增大,滚子与滚道接触变形减小,接触应力增大,刚度增大,最小油膜厚度减小,轴承寿命降低。同一径向工作游隙下,倾覆力矩可以减小滚子与轴承内外圈之间的油膜厚度,从而显著降低轴承疲劳寿命,轴承最佳径向工作游隙范围为-0.004~0mm。  相似文献   
375.
为了研究三维编织C/C复合材料高温氧化环境下的力学性能,在大气环境下开展了有、无抗氧化涂层三维四向C/C复合材料平板试验件700℃时的拉伸试验和拉/拉疲劳试验。拉伸试验结果表明:无涂层三维四向C/C复合材料在700℃保温1h和2h后,强度分别下降至有涂层的70.33%和44.57%,弹性模量分别下降至有涂层的58.57%和38.99%,氧化后的总拉伸应变比有涂层的大幅度提升,材料破坏时无刚度突降现象。疲劳试验结果表明:有涂层三维四向C/C复合材料的剩余刚度先增加,而后保持,最后突降,应力水平为83%经10~5循环后剩余强度比初始强度提高了19.75%;无涂层三维四向C/C复合材料的剩余刚度先增加后降低,直至材料完全破坏,应力水平为75%经10~5循环后剩余强度比初始强度降低了20.40%。  相似文献   
376.
以拉伸应变能寿命预测模型为理论基础,提出了低循环疲劳模拟试验件(简称模拟件)设计的基本准则。针对某涡扇发动机高压涡轮盘螺栓孔部位进行了模拟件优化设计,设计时综合考虑了试验器能力、螺纹连接强度和所需毛坯盘数量等限制因素。优化目标为模拟件与螺栓孔虚拟裂纹0.8mm内第一主应力和第一主应变分布一致,以及最大应力点第二主应力与第一主应力比值一致。对设计结果进行了弹塑性校核。采用该模拟件构型进行了试验研究,由模拟件试验数据得到的安全寿命和轮盘试验给出的安全寿命的差距为4.48%。   相似文献   
377.
针对航空发动机薄壁结构热声疲劳问题,采用耦合的有限元/边界元法,对GH188薄壁结构进行动力学响应计算,采用改进的雨流计数法和Morrow平均应力模型,结合Miner线性累积损伤理论对薄壁结构疲劳寿命进行了预估。基于高温行波管试验器开展了GH188薄壁结构高温声激振疲劳试验研究,获取了薄壁结构在不同温度和声载荷作用下的模态频率、应力/应变响应和疲劳寿命结果。仿真计算结果与试验结果对比分析表明:数值仿真对结构破坏位置判断准确,破坏位置均为结构根部,结构1阶热模态频率具有一致性,误差0.49%~2.09%之间,X方向应力响应峰值集中在基频附近,随温度升高,结构发生软化刚度下降,响应峰值向左发生偏移,且预测水平与试验一致,误差在1%~3%之间,验证了薄壁结构热声响应计算方法与计算模型的准确性。结构疲劳寿命随温度和声压级的上升而均呈现下降趋势,疲劳破坏时间的预估值与试验结果在一个量级之内,误差在3~3.5倍之间,满足工程级寿命预测要求,验证了薄壁结构热声疲劳寿命预估方法的有效性。   相似文献   
378.
针对单晶气冷涡轮叶片的服役载荷特征,以镍基单晶高温合金DD6为对象,设计开展了薄壁圆管试样热机械疲劳(TMF)试验。结果表明:DD6变形响应呈现出明显的TMF棘轮效应,且与相位角、机械载荷水平等密切相关;在相同载荷条件下,同相(IP)TMF寿命总是明显短于反相(OP)。引入高温保载时间或增大机械载荷均会引起棘轮应变的明显增加,缩短结构寿命。结合断口和纵向切片分析,识别了不同载荷条件下影响单晶寿命的关键损伤因素,其中IP TMF主导损伤机理为蠕变和疲劳,而OP TMF主导损伤机理为氧化和疲劳。   相似文献   
379.
针对航空涡扇发动机压气机叶片/轮盘连接结构,设计了一种燕尾榫结构高温微动疲劳试验加载装置,开展了TC11钛合金在200℃及500℃下的微动疲劳试验。通过动态位移及动态应变法实现对燕尾榫微动疲劳萌生寿命的监测。试验中发现微动疲劳裂纹均萌生在燕尾榫接触区域的下边缘,且接触表面存在大量的微动磨屑,属于典型的微动疲劳失效形式。试验结果表明:温度环境对微动疲劳寿命的影响较为明显。随着试验温度的升高,试验件的微动疲劳寿命会逐渐减小。   相似文献   
380.
铸件在铸造过程中会不可避免地产生显微孔洞,严重降低了铸件疲劳寿命。本文综述铸件中显微孔洞特征(尺寸、形状和空间分布)对疲劳寿命的影响,包括显微孔洞类型,孔洞特征分布规律,孔洞最大尺寸预测方法和含孔洞材料疲劳寿命预测方法;通过对疲劳寿命预测模型的回顾,发现目前含显微孔洞铸件疲劳寿命预测方法还不成熟;展望了显微孔洞特征对疲劳寿命影响的研究。提出未来应该依靠先进光源展开原位疲劳实验或者分子动力学仿真来研究孔洞疲劳失效微观机理,建立考虑不同显微孔洞特征参数,以及不同孔洞间相互影响的疲劳寿命定量预测模型。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号