首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   283篇
  免费   103篇
  国内免费   50篇
航空   264篇
航天技术   59篇
综合类   25篇
航天   88篇
  2024年   2篇
  2023年   10篇
  2022年   22篇
  2021年   26篇
  2020年   28篇
  2019年   19篇
  2018年   11篇
  2017年   23篇
  2016年   38篇
  2015年   21篇
  2014年   21篇
  2013年   22篇
  2012年   18篇
  2011年   24篇
  2010年   22篇
  2009年   14篇
  2008年   16篇
  2007年   13篇
  2006年   14篇
  2005年   4篇
  2004年   9篇
  2003年   8篇
  2002年   8篇
  2001年   7篇
  2000年   6篇
  1999年   7篇
  1998年   4篇
  1997年   5篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1991年   2篇
  1986年   2篇
排序方式: 共有436条查询结果,搜索用时 31 毫秒
91.
A new hybrid approach to model high Reynolds number wall-bounded turbulent flows is developed based on coupling a two-level simulation (TLS) approach (Kemenov and Menon, 2006 [1], 2007 [2] in the inner region with conventional large eddy simulation (LES) away from the wall. This new approach is significantly different from previous near-wall approaches for LES. In this hybrid TLS–LES approach, a very fine small-scale (SS) mesh is embedded inside the coarse LES mesh. The SS equations capture fine-scale temporal and spatial variations in all three Cartesian directions for all three velocity components near the wall. The TLS–LES equations are derived using a new scale separation operator that allows a smooth transition between the two regions, with the equations in the transition region obtained by blending the TLS large-scale and LES equations. New terms in the hybrid region are identified. The TLS–LES approach is used to study the near-wall features in canonical turbulent channel flows for a range of Reynolds number using relatively coarse large-scale (LS) grids. Results show that the TLS–LES approach is able to capture the effect of both the LS and SS features in the wall region consistently for the range of simulated Reynolds number.  相似文献   
92.
《中国航空学报》2020,33(1):116-133
In this paper, the Eulerian Stochastic Field (ESF) model in the Transported Probability Density Function (TPDF) class model is combined with the Flamelet Generated Manifolds (FGM) model. This method solves the joint probability density function transport equation by ESF method that considers the interaction mechanism between flame and turbulence with high precision. At the same time, by making use of the advantage of the FGM model, this model is able to incorporate the detailed chemical reaction mechanism (GRI 3.0) with acceptable computational cost. The new model has been implemented in the open source CFD suite-OpenFOAM. Validation of the model has been carried out by simulating the Sandia flame series (three turbulent piloted methane jet flames) issued by the National Laboratory of the United States. The accuracy and advancement of the ESF/FGM turbulent combustion model are verified by comparing the LES results of the new model with the rich experimental data as well as the RANS results. The results demonstrate that the model has a strong ability in capturing combustion phenomena such as extinction and re-ignition in turbulent flame, which is essential in the accurate prediction of the combustion process in real combustion devices, for example, aircraft engines.  相似文献   
93.
For spacecraft swarms, the multi-agent localization algorithm must scale well with the number of spacecraft and adapt to time-varying communication and relative sensing networks. In this paper, we present a decentralized, scalable algorithm for swarm localization, called the Decentralized Pose Estimation (DPE) algorithm. The DPE considers both communication and relative sensing graphs and defines an observable local formation. Each spacecraft jointly localizes its local subset of spacecraft using direct and communicated measurements. Since the algorithm is local, the algorithm complexity does not grow with the number of spacecraft in the swarm. As part of the DPE, we present the Swarm Reference Frame Estimation (SRFE) algorithm, a distributed consensus algorithm to co-estimate a common Local-Vertical, Local-Horizontal (LVLH) frame. The DPE combined with the SRFE provides a scalable, fully-decentralized navigation solution that can be used for swarm control and motion planning. Numerical simulations and experiments using Caltech’s robotic spacecraft simulators are presented to validate the effectiveness and scalability of the DPE algorithm.  相似文献   
94.
《中国航空学报》2020,33(12):3228-3237
A physical model for acoustic resonance in the annular cavity structure is developed to represent the typical characteristic when acoustic resonance occurs. Firstly, the measurement of sound pressure in the casing and rotor blades vibration is operated in a multistage high pressure compressor. The sharp peak frequency and discrete multi-tone occur in the frequency spectrum of sound pressure in the compressor, and the vibration of the first stage of rotor blades synchronously presents the high amplitude. The frequencies associated with rotor blades vibration can be calculated with rotating sound source theory. It is also confirmed that acoustic resonance occurs in the multistage compressor. With acoustic similarity principle, an annular cavity model is established to simulate the typical characteristics of acoustic resonance in the compressor based on Large Eddy Simulation (LES) and Lighthill acoustic analogy. The coupling relationship between cavity acoustic mode and disc vibration mode shape is expounded when acoustic resonance occurs in the model. And acoustic resonance will be locked in the certain flow rate range. All these characteristics match well with those occur in the multistage high pressure compressor.  相似文献   
95.
96.
对于较大的飞行包线,飞机对象的参数变化剧烈,采用常规控制方法往往不能保证在较大飞行包线范围内均取得良好的控制效果,基于此,提出了一种新型的自组织模糊控制方法,该对系统内部参数的剧烈变化具有很强的适应性,然后对飞机飞行控制系统的控制律设计进行了研究。用所提出的模糊控制方法设计了部分控制律,最后以某型国产飞机对象,采用飞机六自由度非线性仿真模型,在一个较大的飞行包线范围内,进行了飞行仿真,取得了良好的  相似文献   
97.
Engineering design is undergoing a paradigm shift from design for performance to design for affordability, operability, and durability, seeking multi-objective optimization. To facilitate this transformation, significantly extended design freedom and knowledge must be available in the early design stages. This paper presents a high-fidelity framework for design and optimization of the liquid swirl injectors that are widely used in aerospace propulsion and power-generation systems. The framework assembles a set of techniques, including Design Of Experiment (DOE), high-fidelity Large Eddy Simulations (LES), machine learning, Proper Orthogonal Decomposition (POD)-based Kriging surrogate modeling (emulation), inverse problem optimization, and uncertainty quantification. LES-based simulations can reveal detailed spatiotemporal evolution of flow structures and flame dynamics in a high-fidelity manner, and identify important injector design parameters according to their effects on propellant mixing, flame stabilization, and thermal protection. For a given a space of design parameters, DOE determines the number of design points to perform LES-based simulations. POD-based emulations, trained by the LES database, can effectively explore the design space and deduce an optimal group of design parameters in a turn-around time that is reduced by three orders of magnitude. The accuracy of the emulated results is validated, and the uncertainty of prediction is quantified. The proposed design methodology is expected to profoundly extend the knowledge base and reduce the cost for initial design stages.  相似文献   
98.
针对单个摄像机的视野范围有限导致在大场景下监控效果不够理想的问题,提出了一种改进的图像拼接与目标定位算法。该算法以多个摄像机获取的具有共视区域的监控图像为基础,通过对图像进行网格划分后分别计算多个局部单应性矩阵完成初步对准,然后对网格顶点进行微调优化完成最后配准。最后对图像进行融合形成无缝、自然的大视角图像,并利用场景信息在获取的全景图像上对目标进行快速定位,以满足监控人员对场景中目标的全景捕捉分析功能。实验结果表明,该算法能显著提高大场景下图像拼接结果的质量并实现目标的快速定位。  相似文献   
99.
大尺寸工件直线度视觉测量系统中摄像机标定的研究   总被引:1,自引:0,他引:1  
根据大尺寸工件直线度激光视觉测量系统的现场标定需要,从分析点结构光传感器模型入手,推导了计算机像平面坐标系到世界坐标之间的映射关系,借助转轴实现系统旋转扫描测量;介绍了系统中摄像机坐标系、传感器坐标系、转轴坐标系、标定块坐标系及全局坐标系等各个坐标系的转换关系,结合测量系统特点设计了特有的靶标,提出了适于大尺寸工件视觉检测系统摄像机参数及全局标定方法。实验表明,该方法快速,可用于现场标定。  相似文献   
100.
A so-called “ISF” prediction method for geomagnetic disturbances caused by solar wind storms blowing to the Earth is suggested. The method is based on a combined approach of solar activity, interplanetary scintillation (I) and geomagnetic disturbance observations during the period 1966–1982 together with the dynamics of solar wind storm propagation (S) and fuzzy mathematics (F). It has been used for prediction tests for 37 geomagnetic disturbance events during the descending solar activity phase 1984–1985, and was presented in 33rd COSPAR conference. Here, it has been improved by consideration of the three dimensional propagation characteristics of each event, the search for the best radio source and the influence of the southward components of interplanetary magnetic fields on the geomagnetic disturbances. It is used for prediction tests for 24 larger geomagnetic disturbance events that produced space anomalies during the period 1980–1999. The main results are: (1) for the onset time of the geomagnetic disturbance, the relative error between the observation, Tobs, and the prediction, Tpred, ΔTpred/Tobs  10% for 45.8% of all events, 30% for 78.3% and >30% for only 21.7%; (2) for the magnetic disturbance magnitude, the relative error between the observation, ∑Kp,obs, and the prediction, ∑Kp,pred, Δ∑Kp,pred/∑Kp,obs  10% for 41.6% of all events, 30% for 79% and 45% for 100%. This shows that the prediction method described here has encouraging prospects for improving predictions of large geomagnetic disturbances in space weather events.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号