首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   320篇
  免费   10篇
  国内免费   2篇
航空   8篇
航天技术   318篇
航天   6篇
  2023年   6篇
  2022年   1篇
  2021年   16篇
  2020年   15篇
  2019年   14篇
  2018年   17篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   33篇
  2013年   35篇
  2012年   15篇
  2011年   38篇
  2010年   24篇
  2009年   41篇
  2008年   35篇
  2007年   3篇
  2006年   2篇
  2005年   5篇
  2004年   1篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1995年   1篇
  1994年   1篇
  1993年   4篇
  1992年   4篇
  1990年   1篇
排序方式: 共有332条查询结果,搜索用时 15 毫秒
81.
The ionospheric topside sounder measurement database developed at the US National Space Science Data Center (NSSDC) is a valuable source of information when investigating the composition and complex dynamics of the upper ionosphere. The database is increasingly used by many scientists around the world for both research and development of empirical models. However, there is always a danger of indiscriminately using the data without properly assessing the data quality and applicability for a given purpose. This paper is concerned with the issue of data screening and pre-processing of the Alouette/ISIS topside sounder database. An overview of the original database availability and formatting is given and the use of solar and geomagnetic indices is discussed. Data screening procedures, concerning detection and handling of erroneous profiles, are also presented. Special attention is drawn to the systematic biases observed in the database and the possibilities for their removal.  相似文献   
82.
利用F区电离层特性参量获取等效中性风的方法及讨论   总被引:1,自引:0,他引:1  
讨论利用电离层特性参量获取F层峰值高度附近中性风信息的三类方法.这些方法主要有:传统的和改进的伺服理论方法、借助电离层模式和数据同化思想的方法和刘立波等提出的方法.并以美国Millstone Hill非相干散射雷达浓度剖面和离子速度数据,以及澳大利亚Beveridge(37°S,144°E)FPI风场和测高仪数据为个例,初步考察利用电离层特性数据导出的等效中性风与观测值的一致性.  相似文献   
83.
利用二维低纬电离层理论时变模式模拟低纬电离层演化,考察影响赤道异常槽位置的物理因素.计算结果显示赤道槽有明显的季节、地方时和经度变化.以110°E为例,北半球夏季期间赤道槽一般在磁倾赤道北侧,最北达3°-3.5°N,而在北半球冬季期间一般位于磁倾赤道南侧,最南可达4°-5°S.进一步分析发现,赤道槽季节变化中光化电离率季节改变的影响很小,主要由水平中性风季节变化贡献.计算以83天为例,白天赤道槽在地理经度100°E附近最南,285°E附近最北,与观测特征基本一致.主要是背景大气水平风场的经度差异导致赤道槽位置的经度变化,而非前人认为直接由磁偏角控制的.  相似文献   
84.
This study investigates the morphology of the GPS TEC responses in the African Equatorial Ionization Anomaly (EIA) region to intense geomagnetic storms during the ascending and maximum phases of solar cycle 24 (2012–2014). Specifically, eight intense geomagnetic storms with Dst ≤ ?100 nT were considered in this investigation using TEC data obtained from 13 GNSS receivers in the East African region within 36–42°E geographic longitude; 29°N–10°S geographic latitude; ± 20°N magnetic latitude. The storm-time behavior of TEC shows clear positive and negative phases relative to the non-storm (median) behavior, with amplitudes being dependent on the time of sudden commencement of the storm and location. When a storm starts in the morning period, total electron content increases for all stations while a decrease in total electron content is manifested for a storm that had its sudden commencement in the afternoon period. The TEC and the EIA crest during the main phase of the storm is significantly impacted by the geomagnetic storm, which experiences an increase in the intensity of TEC while the location and spread of the crest usually manifest a poleward expansion.  相似文献   
85.
A method for monitoring of sporadic formations in the lower ionosphere by use of the amplitude and phase variations of decimeter radio waves in the occultation trans-ionospheric link GPS satellite — LEO CHAMP satellite is described. Typical variations of the amplitude and phase of the occultation signal, caused by layered formations in the lower ionosphere, are considered. Parameters of sporadic structures measured during period of especially strong solar flashes from October 25 till November 9, 2003, are described. Results of statistical analysis of the occurrence frequency of sporadic layers, their altitude distribution, and thickness are presented. The electron density distribution in the lower ionosphere in the equatorial zone is estimated.  相似文献   
86.
The Accelerometer Experiment (ACC) onboard Mars Global Surveyor (MGS) measured 1600 density profiles in the upper atmosphere of Mars during aerobraking. These measurements reveal large-scale and small-scale structure in the thermosphere of Mars. Here, the measurements of mass density for 115 orbits (#P0670–P0789) from November 1 to 30, 1998, under spring equinox and medium solar activity conditions (average F10.7 ∼ 137) during phase 2 of the aerobraking in the thermosphere of Mars at different altitudes and longitudes are presented for northern mid-latitude (17–42°N) in the dayside atmosphere using ACC onboard MGS. From these mass densities, the neutral densities of different gases are derived from their mixing ratios. Using these neutral densities, the longitudinal distribution of photoionization rates and photoelectron impact ionization rates are calculated at wavelength range 1–102.57 nm due to EUV and soft X-ray radiation under photochemical controlled region using Analytical Yield Spectrum approach (AYS). These conditions are appropriate for MGS Phase 2 aerobraking period from which the accelerometer data is used. Under the photochemical equilibrium condition, the electron density near the peak varies as the square root of the total peak ionization rate. Using this fact, an attempt is being made to estimate the mean primary and secondary peak electron density by averaging the longitudinal variations of total peak ionization rates in the northern mid-latitude (17–42°N) ionosphere of Mars, as there is no radio science measurement at this latitude region by MGS.  相似文献   
87.
GPS observations from EUREF permanent GPS network were used to observe the response of TEC (Total Electron Content) to the total solar eclipse on October 3, 2005, under quiet geomagnetic conditions of the daytime ionosphere. The effect of the eclipse was detected in diurnal variations and more distinctly in the variations of TEC along individual satellite passes. The trough-like variations with a gradual decrease and followed by an increase of TEC at the time of the eclipse were observed over a large region. The depression of TEC amounted to 3–4 TECU. The maximum depression was observed over all stations located at the maximum path of the solar eclipse. The delay of a minimum level of TEC with respect to the maximum phase of the eclipse was about 20–30 min.  相似文献   
88.
This paper presents an novel extreme learning machine (ELM)-based prediction model for the ionospheric propagation factor M(3000)F2 at Darwin station (12.4°S, 131.5°E; −44.5°dip) in Australia. The proposed ELM model is trained with hourly daily values of M(3000)F2 from the period 1998–2014 except 2001 and 2009. The hourly daily values of 2001 (high solar activity) and 2009 (low solar activity) are used for validating the prediction accuracy. The proposed ELM for modeling M(3000)F2 can achieve faster training process and similar testing accuracy compared with backward propagation neural network (BPNN). In addition, the performance of the ELM is verified by comparing the predicted values of M(3000)F2 with observed values and the international reference ionosphere (IRI −2016) model predicted values. Based on the error differences (the root mean square error (RMSE) and the M(3000)F2 percentage improvement values M(3000)F2IMP(%)), the result demonstrates the effectiveness of the ELM model compared with the IRI-2016 model at hourly, daily, monthly, and yearly in high (2001) and low (2009) solar activity years. The ELM also shows good agreement with observations compared with the IRI during disturbed magnetic activity.  相似文献   
89.
Anomalous behavior of ionospheric total electron content (TEC) prior to earthquake has been observed in many studies. Evidence of such seismo-ionospheric coupling effects suggests that it is plausible to rely on TEC signatures for early earthquake warning. However, the detection of pre-earthquake TEC anomalies (PETA) has not been adopted in practice due to two pertinent issues. Firstly, the effects of space weather activity can affect TEC levels and cause anomalous behavior in the TEC. Usually arbitrary thresholds are set for space weather indices to eliminate TEC anomaly due to space weather effects. Secondly, the choice regarding moving time-window length used to characterise background variation of TEC within the statistical envelope approach has an effect on detection of PETA. While the rule-of-thumb in selecting the moving window length is to have a time window capable of capturing background variability and short-term fluctuations, the length of the time window used in the literature varies with little justification. In this study, a critical examination is conducted on the statistical envelope approach and in particular, to eliminate the effect of space weather activity without the use of arbitrary space indices to detect PETA. A two-part PETA identification procedure is proposed, consisting of wavelet analyses isolating non-earthquake TEC contributions, followed by the statistical envelope method using a moving window length standardized based on observed periodicities and statistical implications is suggested. The approach is tested on a database of 30 large earthquakes (M?≥?7.0). The proposed procedure shows that PETA can be detected prior to earthquakes at higher confidence levels without the need to separately check for space weather activity. More importantly, the procedure was able to detect PETA for studies where it was previously reported that PETA could not be detected or detected convincingly.  相似文献   
90.
《中国航空学报》2021,34(5):195-204
Detecting and characterizing Total Electron Content (TEC) depletion is important for studying the ionospheric threat due to the Equatorial Plasma Bubble (EPB) when applying the Ground-Based Augmentation System (GBAS) at low latitudes. This paper develops a robust method to automatically identify TEC depletion and derive its parameters. The rolling barrel algorithm is used to automatically identify the TEC depletion candidate and its parameters. Then, the depletion candidates are screened by several improved techniques to distinguish actual depletions from other phenomena such as Traveling Ionospheric Disturbance (TID) or abnormal data. Next, based on the depletion signals from three triangular receivers, the method derives EPB parameters such as velocity, width and gradient. The time lag and front velocity are calculated based on cross-correlation using TEC depletions and the geometrical distribution of three triangular receivers. The width and gradient of slope are then determined by using TEC depletion from a single receiver. By comparison, both the station-pair method and proposed method depend on the assumption that the EPB morphology is frozen during the short time when the plasma bubble moves between the receivers. However, our method relaxes the restriction that the baseline length should be shorter than the width of slope required by the station-pair. This relaxation is favorable for studying small-scale slope of depletions using stations of a longer baseline. In addition, the accuracy of the width and gradient is free of impact from hardware biases and small-scale disturbance, as it is based only on the relative TEC variation. The method is demonstrated by processing Global Positioning System (GPS) and BeiDou Navigation Satellite System (BDS) data on 15 August, 2018, in a solar minimum cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号