首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   320篇
  免费   10篇
  国内免费   2篇
航空   8篇
航天技术   318篇
航天   6篇
  2023年   6篇
  2022年   1篇
  2021年   16篇
  2020年   15篇
  2019年   14篇
  2018年   17篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   33篇
  2013年   35篇
  2012年   15篇
  2011年   38篇
  2010年   24篇
  2009年   41篇
  2008年   35篇
  2007年   3篇
  2006年   2篇
  2005年   5篇
  2004年   1篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1995年   1篇
  1994年   1篇
  1993年   4篇
  1992年   4篇
  1990年   1篇
排序方式: 共有332条查询结果,搜索用时 125 毫秒
211.
The purpose of the LIEDR (local ionospheric electron density profile reconstruction) system is to acquire and process data from simultaneous ground-based total electron content (TEC) and digital ionosonde measurements, and subsequently to deduce the vertical electron density distribution above the ionosonde’s location. LIEDR is primarily designed to operate in real time for service applications and, for research applications and further development of the system, in a post-processing mode. The system is suitable for use at sites where collocated TEC and digital ionosonde measurements are available. Developments, implementations, and some preliminary results are presented and discussed in view of possible applications.  相似文献   
212.
Statistical and spectral analyses are performed to investigate variations of two ionosphere F2 layer key parameters, the critical frequency (foF2) and the peak height (hmF2), that were measured over Irkutsk (52.5°N, 104.0°E) from December 2006 to January 2008 under solar minimum. The analyses showed that both parameters contain quasi-harmonic oscillations with periods of Tn = 24/n hours (n = 1–7), among which the diurnal (n = 1) and semidiurnal (n = 2) ones are the strongest. Seasonal variations are explored of mean and median values, spectrum, amplitude, and phase of the diurnal and semidiurnal components of foF2 and hmF2.  相似文献   
213.
The variability of total electron content (TEC) over the crest of equatorial anomaly station Bhopal has been studied during the low solar activity period (2005–2006) using global positioning system (GPS) data. Diurnal variation of TEC is studied for different seasons. Interesting features like the winter anomaly, semiannual anomaly and noon bite out in TEC have been reported. GPS derived TEC is then compared with International Reference Ionosphere (IRI) 2001 model and the difference between predictions and observation is being studied. Using the variability index we have also studied the TEC variability for different seasons and also during quiet and disturbed conditions. A higher variability is observed on quiet days as compared to disturbed days during daytime and nighttime hours.  相似文献   
214.
In recent years, new techniques and algorithms such as Artificial Neural Networks (ANNs), Fuzzy Inference Systems (FIS) and Genetic Algorithm (GA) have been used as alternative statistical tools in modeling and forecasting issues. These methods have been extensively used in the field of geosciences and atmospheric physics. The main purpose of this paper is to combine FIS and ANNs for local modeling of the ionosphere Total Electron Content (TEC) in Iran. An Adaptive Neuro-Fuzzy Inference System (ANFIS) is developed for TEC modeling. Also, Multi-Layer Perceptron ANN (MLP-ANN) and ANN based on Radial Base Functions (RBF) have been designed for analyzing ANFIS results. Observations of 29 Global Positioning System (GPS) stations from the Iranian Permanent GPS Network (IPGN) have been used in 3 different seasons in 2015 and 2016. These stations are located at geomagnetic low latitudes region. Out of these 29 stations, 24 stations for training and 5 stations for testing and validating were selected. The relative and absolute errors have been used to evaluate the accuracy of the proposed model. Also, the results of this paper are compared with the International Reference Ionosphere model (IRI2016). The maximum values of the average relative error for RBF, MLP-ANN, ANFIS and IRI2016 methods are 13.88%, 11.79%, 10.06%, and 18.34%, respectively. Also, the maximum values of the average absolute error for these methods are 2.38, 2.21, 1.5 and 3.36 TECU, respectively. Comparison of diurnal predicted TEC from the ANFIS, RBF, MLP-ANN and IRI2016 models with GPS-TEC revealed that the ANFIS provides more accurate predictions than the other methods in the test area.  相似文献   
215.
The Limb Viewing Hyper Spectral Imager (LiVHySI) is one of the Indian payloads onboard YOUTHSAT (inclination 98.73°, apogee 817 km) launched in April, 2011. The Hyper-spectral imager has been operated in Earth’s limb viewing mode to measure airglow emissions in the spectral range 550–900 nm, from terrestrial upper atmosphere (i.e. 80 km altitude and above) with a line-of-sight range of about 3200 km. The altitude coverage is about 500 km with command selectable lowest altitude. This imaging spectrometer employs a Linearly Variable Filter (LVF) to generate the spectrum and an Active Pixel Sensor (APS) area array of 256 × 512 pixels, placed in close proximity of the LVF as detector. The spectral sampling is done at 1.06 nm interval. The optics used is an eight element f/2 telecentric lens system with 80 mm effective focal length. The detector is aligned with respect to the LVF such that its 512 pixel dimension covers the spectral range. The radiometric sensitivity of the imager is about 20 Rayleigh at noise floor through the signal integration for 10 s at wavelength 630 nm. The imager is being operated during the eclipsed portion of satellite orbits. The integration in the time/spatial domain could be chosen depending upon the season, solar and geomagnetic activity and/or specific target area. This paper primarily aims at describing LiVHySI, its in-orbit operations, quality, potential of the data and its first observations. The images reveal the thermospheric airglow at 630 nm to be the most prominent. These first LiVHySI observations carried out on the night of 21st April, 2011 are presented here, while the variability exhibited by the thermospheric nightglow at O(1D) 630 nm has been described in detail.  相似文献   
216.
Electron density measured by the Indian satellite SROSS C2 at the altitude of ∼500 km in the 75°E longitude sector for the ascending half of the solar cycle 22 from 1995 to 1999 are used to study the position and density of the equatorial ionization anomaly (EIA). Results show that the latitudinal position and peak electron density of the EIA crest and crest to trough ratios of the anomaly during the 10:00–14:00 LT period vary with season and from one year to another. Both EIA crest position and density are found to be asymmetric about the magnetic equator and the asymmetry depends on season as well as the year of observation, i.e., solar activity. The latitudinal position of the crest of the EIA and the crest density bears good positive correlation with F10.7 and the strength of the equatorial electrojet (EEJ).  相似文献   
217.
The interplanetary magnetic field, geomagnetic variations, virtual ionosphere height h′F, and the critical frequency foF2 data during the geomagnetic storms are studied to demonstrate relationships between these phenomena. We study 5-min ionospheric variations using the first Western Pacific Ionosphere Campaign (1998–1999) observations, 5-min interplanetary magnetic field (IMF) and 5-min auroral electrojets data during a moderate geomagnetic storm. These data allowed us to demonstrate that the auroral and the equatorial ionospheric phenomena are developed practically simultaneously. Hourly average of the ionospheric foF2 and h′F variations at near equatorial stations during a similar storm show the same behavior. We suppose this is due to interaction between electric fields of the auroral and the equatorial ionosphere during geomagnetic storms. It is shown that the low-latitude ionosphere dynamics during these moderate storms was defined by the southward direction of the Bz-component of the interplanetary magnetic field. A southward IMF produces the Region I and Region II field-aligned currents (FAC) and polar electrojet current systems. We assume that the short-term ionospheric variations during geomagnetic storms can be explained mainly by the electric field of the FAC. The electric fields of the field-aligned currents can penetrate throughout the mid-latitude ionosphere to the equator and may serve as a coupling agent between the auroral and the equatorial ionosphere.  相似文献   
218.
A new set of data obtained at low solar activity from Ilorin, Nigeria (geog. latitude 8.5°N, geog longitude, 4.6°E, dip 4.1°S) is used to validate the IRI 2001 model at low solar activity. The results show in general a good agreement between model and observed B0 at night but an over estimation during daytime. The overestimation is greatest during the morning period (0600LT–1000LT). The model prediction for B1 is fairly good at night and during the day. A dependence of B0 on solar zenith angle χ is observed during the daytime. A formulation of the form B0 = A[cos(χ)n] is therefore proposed. Values of the constants n and A were determined for the period of low solar activity for this station.  相似文献   
219.
The Swarm mission was selected as the 5th mission in ESA’s Earth Explorer Programme in 2004. This mission aims at measuring the Earth’s magnetic field with unprecedented accuracy. This will be done by a constellation of three satellites, where two will fly at lower altitude, measuring the gradient of the magnetic field, and one satellite will fly at higher altitude. The measured magnetic field is the sum of many contributions including both magnetic fields and currents in the Earth’s interior and electrical currents in Geospace. In order to separate all these sources electric field and plasma measurements will also be made to complement the primary magnetic field measurements. Together these will allow the deduction of information on a series of solid earth processes responsible for the creation of the fields measured. The completeness of the measurements on each satellite and the constellation aspect, however, implies simultaneous observations of a unique set of important electrodynamical parameters crucial for the understanding of the physical processes in Geospace, which are an important part of the objectives of the International Living With a Star Programme, ILWS. In this paper an overview of the Swarm science objectives, the mission concept, the scientific instrumentation, and the expected contribution to the ILWS programme will be summarized.  相似文献   
220.
通过空间飞行器抛出羽烟的球状近似,研究白天NO和NO2羽烟在E层的扩散,光化学过程及它们对电子密度的影响。由于光致电离和郭解复合反应,抛出的NO羽烟在E层造成电子密度最大7.5倍的瞬时增加,而NO2羽烟可以使E层下部电子密度瞬时升高达24倍。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号