首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   320篇
  免费   10篇
  国内免费   2篇
航空   8篇
航天技术   318篇
航天   6篇
  2023年   6篇
  2022年   1篇
  2021年   16篇
  2020年   15篇
  2019年   14篇
  2018年   17篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   33篇
  2013年   35篇
  2012年   15篇
  2011年   38篇
  2010年   24篇
  2009年   41篇
  2008年   35篇
  2007年   3篇
  2006年   2篇
  2005年   5篇
  2004年   1篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1995年   1篇
  1994年   1篇
  1993年   4篇
  1992年   4篇
  1990年   1篇
排序方式: 共有332条查询结果,搜索用时 15 毫秒
171.
In the present paper, plasma probe data taken from DEMETER and DMSP-F15 satellites were used to study the ion density and temperature disturbances in the morning topside ionosphere, caused by seismic activity at low latitudes. French DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) micro-satellite mission had been especially designed to provide global scale observations in the topside ionosphere over seismically active regions. Onboard the DEMETER satellite, the thermal plasma instrument called “Instrument Analyser de Plasma” (IAP) provides ion mass and densities, ion temperature, three component ion drift and ion density irregularities measurements. As a part of “Defense Meteorological Satellite Program”, DMSP-F15 satellite is on orbit operation since 1999. It provides ionospheric plasma diagnostics by means of the “Special Sensor-Ion, Electron and Scintillations” (SSIES-2) instrument. We examined few examples of possible seismic effects in the equatorial ionosphere, probably associated with seismic activity during December month in the area of Sumatra Island, including main shock of giant Sumatra event. It is found that the localized topside ionospheric disturbances appear close to the epicenters of certain earthquakes in the Sumatra region. In two cases, ion H+/O+ ratio rises more than one hour before the main shock, due to the O+ density decrease at the winter side of the geomagnetic equator, with longitudinally closest location to the epicenter of the earthquakes. These anomalous depletions in O+ density do exist in all cases of SSIES-2 data. Particularly for Sumatra main event, more than one hour after the main shock, we observe large-scale depletion in O+ density northward of the geomagnetic equator at winter side hemisphere. Associated with O+ depletion, ion temperature latitudinal profile around the geomagnetic equator shows enhanced asymmetry with minimum at the summer side and maximum in positive Ti deviation from mean value at the winter side. This disturbance lasted for more than three hours, later in time observed at the same place by IAP/DEMETER.  相似文献   
172.
The present study reveals the features of ionospheric parameters variations during the geomagnetic storm of September 7–8, 2017. In particular, parameters of vertical (foF2, foEs) and oblique ionospheric sounding (MOF, modes), absorption level, Total Electron Content (TEC) and particle fluxes at high altitudes were under analysis. The storm was characterized by two Dst-index mimima and can be considered as a sequence of two storms: first - with Dstmin?=??142?nT at 02 UT on September 8th and second - with Dstmin?=??122?nT and at 15 UT on September 8th. It was found that these two storms had different impacts on the ionosphere and HF propagation at mid- and high-latitudes of Northern Hemisphere. The signals of vertical and oblique ionospheric sounding were present in all ionograms before the first storm. Further, at the maximum of the first storm these signals were totally absorbed. Then, before the second storm and during its maximum the signals were detected again in the ionograms due to the low absorption. GOES satellite data showed the significant burst of electrons and protons only during the first storm and small particle fluxes - during the second storm. This feature was also confirmed with GPS data: TEC increased during the first storm and decreased during the second storm.  相似文献   
173.
三轴稳定的地球静止轨道卫星在轨运行期间温度会有周期性变化.其上装载的远紫外电离层成像仪与卫星之间的热应力变化造成机械传递,导致仪器指向与装星时的初始位置发生偏差.恒星在惯性坐标系中的位置保持不变,可以将其作为电离层成像仪在轨几何定标的定标源.本文建立了基于恒星的电离层成像仪在轨几何定标模型,通过拍摄所筛选恒星图像,得出仪器在轨指向相对于初始值的偏离程度,从而提高电离层成像仪的成像几何精度.通过模拟试验,验证了运用此技术进行在轨几何定标的可行性.研究结果可为电离层成像仪常态化自动在轨几何定标奠定基础.   相似文献   
174.
In this paper, the peculiarities of ionospheric response to geomagnetic disturbances observed at the decay and minimum of solar activity (SA) in the period 2004–2007 are investigated with respect to different geomagnetic conditions. Data from ionospheric stations and results of total electron content (TEC) measurements made at the network of GPS ground-based receivers located within the latitude–longitude sector (20–70°N, 90–160°Е) are used in this study. Three groups of anomalous ionospheric response to geomagnetic disturbances have been observed during low solar activity. At daytime, the large-scale traveling ionospheric disturbances (LSTIDs) could generally be related to the main phase of magnetic storm. Quasi-two-days wavelike disturbances (WLDs) have been also observed in the main phase independent of the geomagnetic storm intensity. Sharp electron density oscillations of short duration (OSD) occurred in the response to the onset of both main and recovery phases of the magnetic storm in the daytime at middle latitudes. A numerical model for ionosphere–plasmasphere coupling was used to interpret the occurrence of LS TIDs. Results showed that the LSTIDs might be associated with the unexpected lifting of F2 layer to the region with the lower recombination rate by reinforced meridional winds that produces the increase of the electron density in the F2 layer maximum.  相似文献   
175.
This paper presents an overview of the mathematical foundations for techniques in Exploratory Data Analysis (EDA) for the purpose of investigating the relationships among the numerous variables in large sets of multivariate space weather data. Specifically, we cover techniques in Principal Components Analysis (PCA) and Common Factor Analysis (CFA). These techniques are illustrated using space weather activity indices collected during the year 2002 and the corresponding noon-time hmF2 data from the International Reference Ionosphere (IRI). A CFA is used to categorize the activity indices, and a PCA is used to derive two macro-indices of activity to ascertain the strength of solar and geomagnetic activity. These macro-indices are then used to compare and contrast IRI’s noon-time hmF2 values at six different geographic stations. It was found that the correlation between hmF2 and the macro-indices more accurately represented the variation of this correlation with latitude found in previous studies than if we used an isolated conventional index, such as SSN and AE. We also found that the daily maximum value of the Polar Cap Index was dependent on both solar and geomagnetic activity, but the closely-related cross-Polar Cap Potential was solely associated with elevated levels of geomagnetic activity, which is a unique result compared to previous studies. We argue that the discrepancy can be explained by the difference in experiment designs between the two studies. This paper demonstrates the usefulness of EDA in space weather studies of large multivariate data sets.  相似文献   
176.
刘音华  陈瑞琼  刘娅  李孝辉  张首刚 《宇航学报》2022,43(10):1389-1398
为了对比空间站和导航卫星共视的性能差异,深入分析影响共视性能的主要误差源特征,推进共视技术进一步发展,以对共视时间比对基本原理的分析为基础,从系统设计和关键误差源影响两个方面对比分析空间站和导航卫星共视的差异。理论研究结果表明,不同于导航卫星共视,轨道误差是影响空间站共视精度进一步提升的主要因素;此外,空间站共视还需考虑地球引力时延等精细误差的影响。最后,设计并实施了仿真实验和实测实验,通过实验数据进一步对比两者的性能差异。实验结果表明空间站和导航卫星共视各有利弊,虽然空间站共视的服务区域和连续性逊于导航卫星共视,但可以实现的共视精度至少比导航卫星高一个数量级。  相似文献   
177.
全球电离层对2000年4月6-7日磁暴事件的响应   总被引:1,自引:0,他引:1  
利用分布于全球的电离层台站的测高仪观测数据,对扰动期间,foF2值与其宁静期间参考值进行比较,研究了2000年4月6—7日磁暴期间全球不同区域电离层的响应形态,并通过对比磁扰期间NmF2的变化与由MSISR90经验模式估算的中性大气浓度比(no/nN2)的变化,探讨了本次事件期间的电离层暴扰动机制.结果表明,在磁暴主相和恢复相早期,出现了全球性的电离层F2层负相暴效应.最大负相暴效应出现在磁暴恢复相早期,即电离层暴恢复相开始时间滞后于磁暴恢复相开始时间.在磁暴恢复相后期,一些台站出现正相扰动.研究结果表明,本次事件期间的电离层暴主要是由磁暴活动而诱发的热层暴环流引起的.  相似文献   
178.
电离层短波射线追踪   总被引:10,自引:0,他引:10  
本文以电离层等离子体参量的平均背景模式计算为基础, 给出一种电离层短波射线轨迹计算方法。供短波通信系统、工作于短波段的其它系统(如HF雷达的目标定位系统)及有关研究工作使用参考。   相似文献   
179.
This study analyzed the occurrence of ionospheric irregularities over South Korea and Japan (mid-latitudes) during the years 2010–2015. The irregularities were quantified using the rate of change of total electron content (TEC) index (ROTI), which detects irregularities with scale sizes in the range of 400 m–2.5 km. The ROTI threshold for an ionospheric irregularity to have occurred was set as 0.1 TECU/min. Results showed that ionospheric irregularities mostly occur during night-time and around local noon-time in the seasons of spring and summer. In addition, the percentage of ionospheric irregularities had a high positive correlation with solar flux (F10.7) (r > 0.72). For the first time, we showed good correspondence between ionospheric irregularities measured by the ROTI index and sporadic E (Es). The median ROTI associated with ionospheric irregularities over a South Korea station (DAEJ) and a Japan station (KGNI) were 0.131 and 0.125 TECU/min, respectively. However, in severe cases of ionospheric irregularities, the ROTI values over DAEJ (KGNI) can reach 0.246 (0.217) and 0.314 (0.339) TECU/min during day and night, respectively. These critical ROTI values can be important in interpreting and monitoring ionospheric irregularity occurrence over South Korea and Japan.  相似文献   
180.
An examination of the high latitude performance of the bottomside and topside F-layer parameterizations of the NeQuick electron density model is presented using measurements from high latitude ionosonde and Incoherent Scatter Radar (ISR) facilities.For the bottomside, we present a comparison between modeled and measured B2Bot thickness parameter. In this comparison, it is seen that the use of the NeQuick parameterization at high latitudes results in significantly underestimated bottomside thicknesses, regularly exceeding 50%. We show that these errors can be attributed to two main issues in the NeQuick parameterization:(1) through the relationship relating foF2 and M3000F2 to the maximum derivative of F2 electron density, which is used to derive the bottomside thickness, and (2) through a fundamental inability of a constant thickness parameter, semi-Epstein shape function to fit the curvature of the high latitude F-region electron density profile.For the topside, a comparison is undertaken between the NeQuick topside thickness parameterization, using measured and CCIR-modeled ionospheric parameters, and that derived from fitting the NeQuick topside function to Incoherent Scatter Radar-measured topside electron density profiles. Through this comparison, we show that using CCIR-derived foF2 and M3000F2, used in both the NeQuick and IRI, results in significantly underestimated topside thickness during summer periods, overestimated thickness during winter periods, and an overall tendency to underestimate diurnal, seasonal, and solar cycle variability. These issues see no improvement through the use of measured foF2 and M(3000)F2 values. Such measured parameters result in a tendency for the parametrization to produce a declining trend in topside thickness with increasing solar activity, to produce damped seasonal variations, and to produce significantly overestimated topside thickness during winter periods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号