首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2292篇
  免费   488篇
  国内免费   744篇
航空   2186篇
航天技术   512篇
综合类   317篇
航天   509篇
  2024年   13篇
  2023年   67篇
  2022年   106篇
  2021年   161篇
  2020年   169篇
  2019年   139篇
  2018年   153篇
  2017年   163篇
  2016年   187篇
  2015年   156篇
  2014年   190篇
  2013年   178篇
  2012年   215篇
  2011年   226篇
  2010年   165篇
  2009年   148篇
  2008年   146篇
  2007年   179篇
  2006年   133篇
  2005年   97篇
  2004年   78篇
  2003年   73篇
  2002年   50篇
  2001年   45篇
  2000年   44篇
  1999年   34篇
  1998年   34篇
  1997年   31篇
  1996年   26篇
  1995年   17篇
  1994年   19篇
  1993年   19篇
  1992年   15篇
  1991年   15篇
  1990年   8篇
  1989年   12篇
  1988年   8篇
  1987年   3篇
  1986年   2篇
排序方式: 共有3524条查询结果,搜索用时 31 毫秒
101.
采用新型凯夫拉纤维作为某空间用小型低温杜瓦瓶的支撑材料,在验证其力学性能的基础上,设计了杜瓦瓶的支撑结构,建立了一种新的热力学耦合优化模型,给出支撑结构固有频率、热应力及发射环境下的约束条件,通过一种“离散点加密”新约束优化法计算出了支撑结构满足约束条件范围内的要求的最优设计参数。  相似文献   
102.
针对临近空间高超声速飞行器存在的问题,设计了一种折叠翼飞行器,可以通过折叠机翼来适应各种飞行状态,保持最优的气动特性。并针对临近空间滑翔式高超声速的特点,采用高斯伪谱法对固定翼飞行器和折叠翼飞行器的轨迹优化,通过将折叠翼飞行器与传统固定翼飞行器在射程能力、规避热流能力方面进行对比,提出了一种综合目标的轨迹优化思想。设计的折叠翼飞行器相比传统固定翼飞行器性能更加优越,更适合临近空间环境,提高了17.67%的航程,减少了热流率峰值的35.72%,并通过控制系统的设计和仿真加以验证,仿真结果表明变体飞行器机动能力相比固定翼飞行器有了显著的提高。  相似文献   
103.
基于伴随方法的单级低速压气机气动设计优化   总被引:2,自引:0,他引:2  
罗佳奇  杨婧 《航空学报》2020,41(5):623368-623368
采用梯度方法对某型4.5级压气机最后级进行气动设计优化研究,梯度由连续伴随方法计算确定,多排伴随方程采用伴随掺混面模型进行数值求解。首先,采用基于经验修正的初步设计方法设计带进口导叶的4.5级低速、低压缩比压气机的原始气动外形。之后,在压气机近失速工况对最后级静子叶片进行伴随气动设计优化,通过优化叶型和安装角降低流动损失,目标函数定义为加权求和形式的熵增和流量偏差,优化中对流量进行约束。最后,开展基于伴随方法的多工况气动设计优化研究,改善两个不同转速条件下最后级的气动性能。优化结果表明,基于伴随方法的多排气动设计优化可以通过改变叶片气动外形提升多排全工况气动性能。  相似文献   
104.
《中国航空学报》2021,34(5):386-398
By integrating topology optimization and lattice-based optimization, a novel multi-scale design method is proposed to create solid-lattice hybrid structures and thus to improve the mechanical performance as well as reduce the structural weight. To achieve this purpose, a two-step procedure is developed to design and optimize the innovative structures. Initially, the classical topology optimization is utilized to find the optimal material layout and primary load carrying paths. Afterwards, the solid-lattice hybrid structures are reconstructed using the finite element mesh based modeling method. And lattice-based optimization is performed to obtain the optimal cross-section area of the lattice structures. Finally, two typical aerospace structures are optimized to demonstrate the effectiveness of the proposed optimization framework. The numerical results are quite encouraging since the solid-lattice hybrid structures obtained by the presented approach show remarkably improved performance when compared with traditional designs.  相似文献   
105.
《中国航空学报》2020,33(4):1260-1271
In the design process of advanced aero-engines, it is necessary to carry out an effective analysis method between structural features and mechanical characteristics for a better structural optimization. Based on the structural composition and functions of aero-engines, the concept and contents of structural efficiency can reflect the relation between structural features and mechanical characteristics. In order to achieve the integrated design of structural and mechanical characteristics, one quantitative analysis method called Structural Efficiency Assessment Method (SEAM) was put forward. The structural efficiency coefficient was obtained by synthesizing the parameters to quantitatively evaluate the aero-engine structure design level. Parameterization method to evaluate structural design quality was realized. After analyzing the structural features of an actual dual-rotor system in typical high bypass ratio turbofan engines, the mechanical characteristics and structural efficiency coefficient were calculated. Structural efficiency coefficient of high-pressure rotor (0.43) is higher than that of low-pressure rotor (0.29), which directly shows the performance of the former is better, there is room for improvement in structural design of the low-pressure rotor. Thus the direction of structural optimization was pointed out. The applications of SEAM shows that the method is operational and effective in the evaluation and improvement of structural design.  相似文献   
106.
Ti2AlNb intermetallic alloy is a relatively newly developed high-temperature-resistant structural material, which is expected to replace nickel-based super alloys for thermally and mechanically stressed components in aeronautic and automotive engines due to its excellent mechanical properties and high strength retention at elevated temperature. The aim of this work is to present a fast and reliable methodology of inverse identification of constitutive model parameters directly from cutting experiments. FE-machining simulations implemented with a modified Johnson-Cook (TANH) constitutive model are performed to establish the robust link between observables and constitutive parameters. A series of orthogonal cutting experiments with varied cutting parameters is carried out to allow an exact comparison to the 2D FE-simulations. A cooperative particle swarm optimization algorithm is developed and implemented into the Matlab programs to identify the enormous constitutive parameters. Results show that the simulation observables (i.e., cutting forces, chip morphologies, cutting temperature) implemented with the identified optimal material constants have high consistency with those obtained from experiments, which illustrates that the FE-machining models using the identified parameters obtained from the proposed methodology could be predicted in a close agreement to the experiments. Considering the wide range of the applied unknown parameters number, the proposed inverse methodology of identifying constitutive equations shows excellent prospect, and it can be used for other newly developed metal materials.  相似文献   
107.
One of the challenges of combustion chamber and nozzle design in a Liquid Propellant Engine (LPE) is to predict the behavior and performance of the cooling system. Therefore, while designing, the optimization of the cooling system is always of great importance. This paper presents the multi-objective optimization of the LPE’s cooling system. To this end, a novel framework has been developed, resulting from the application of the Response Surface Method (RSM) and the correlation coefficients matrix, sensitivity analysis and the The Particle Swarm Optimization (PSO). based on this method, the input variables, constraints, objective functions, and their surfaces were identified. In terms of multi-optimization algorithms, RSM and PSO are utilized to get global optimum. In conclusion, the methodology capability is to optimize the LPE’s cooling system, 6 percentage increase in total heat transfer and 7 bar decrease cooling system pressure loss, which resulted in a 1.2-seconds increase in the specific impulse of the engine.  相似文献   
108.
A study on reconfiguration manoevres applied to a tetrahedral formation in highly elliptical orbits is proposed, by using a propellantless solution. The manoeuvring strategy consists in exploiting certain environmental forces, specifically those provided by solar radiation pressure and atmospheric drag, by actively controlling the satellites’ attitudes. Through inverse dynamics particle swarm optimization the optimal attitudes required for the manoeuvres are evaluated, whereas the configuration’s evolution is simulated by a high-fidelity orbital simulator. The goal of the reconfiguration problem is to find an optimal control in order for the four spacecraft to reach a desired configuration in a specified portion of orbit, where the desired configuration is evaluated by a shape and size geometric parameter. By increasing the manoeuvring time and the satellites’ area to mass ratio, all the case studies considered are successfully verified.  相似文献   
109.
《中国航空学报》2020,33(2):621-633
This paper presents a multiscale design method for simultaneous topology optimization of both macrostructures and microstructures. Geometric features are extended as design primitives at both macro and micro scales and represented by Level Set Functions (LSFs). Parameters related to the locations, sizes, and orientations of macro and micro features are considered as design variables and optimized simultaneously. In the overlapping areas of different macro features, embedded microstructures are optimally figured out as the solution of the corresponding sub-optimization problem. In this study, the eXtended Finite Element Method (XFEM) is implemented for structural and sensitivity analyses with respect to design variables. This method has the advantage of using a fixed grid independent of the topology optimization process. The homogenization procedure is applied to calculate the effective properties of considered microstructures in each macro feature. Numerical examples are presented to illustrate the effectiveness of the proposed method. Results depict that the multiscale design cannot obviously improve structural stiffness compared with a solid-material design under the linear elastic condition.  相似文献   
110.
《中国航空学报》2020,33(6):1573-1588
An efficient method employing a Principal Component Analysis (PCA)-Deep Belief Network (DBN)-based surrogate model is developed for robust aerodynamic design optimization in this study. In order to reduce the number of design variables for aerodynamic optimizations, the PCA technique is implemented to the geometric parameters obtained by parameterization method. For the purpose of predicting aerodynamic parameters, the DBN model is established with the reduced design variables as input and the aerodynamic parameters as output, and it is trained using the k-step contrastive divergence algorithm. The established PCA-DBN-based surrogate model is validated through predicting lift-to-drag ratios of a set of airfoils, and the results indicate that the PCA-DBN-based surrogate model is reliable and obtains more accurate predictions than three other surrogate models. Then the efficient optimization method is established by embedding the PCA-DBN-based surrogate model into an improved Particle Swarm Optimization (PSO) framework, and applied to the robust aerodynamic design optimizations of Natural Laminar Flow (NLF) airfoil and transonic wing. The optimization results indicate that the PCA-DBN-based surrogate model works very well as a prediction model in the robust optimization processes of both NLF airfoil and transonic wing. By employing the PCA-DBN-based surrogate model, the developed efficient method improves the optimization efficiency obviously.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号