首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   311篇
  免费   166篇
  国内免费   158篇
航空   328篇
航天技术   65篇
综合类   13篇
航天   229篇
  2024年   2篇
  2023年   13篇
  2022年   33篇
  2021年   37篇
  2020年   45篇
  2019年   32篇
  2018年   25篇
  2017年   14篇
  2016年   31篇
  2015年   28篇
  2014年   41篇
  2013年   39篇
  2012年   24篇
  2011年   42篇
  2010年   35篇
  2009年   21篇
  2008年   14篇
  2007年   18篇
  2006年   30篇
  2005年   14篇
  2004年   13篇
  2003年   11篇
  2002年   7篇
  2001年   11篇
  2000年   4篇
  1999年   7篇
  1998年   3篇
  1997年   4篇
  1996年   6篇
  1995年   6篇
  1994年   6篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   4篇
  1988年   5篇
  1985年   2篇
排序方式: 共有635条查询结果,搜索用时 46 毫秒
81.
The navigation problem of the lifting reentry vehicles has attracted much research interest in the past decade.This paper researches the navigation in the blackout zone during the reentry phase of the aircraft,when the communication signals are attenuated and even interrupted by the blackout zone.However,when calculating altitude,a pure classic inertial navigation algorithm appears imprecise and divergent.In order to obtain a more precise aircraft altitude,this paper applies an integrated navigation method based on inertial navigation algorithms,which uses drag derived altitude to aid the inertial navigation during the blackout zone.This method can overcome the shortcomings of the inertial navigation system and improve the navigation accuracy.To further improve the navigation accuracy,the applicable condition and the main error factors,such as the atmospheric coefficient error and drag coefficient error are analyzed in detail.Then the damping circuit design of the navigation control system and the damping coefficients determination is introduced.The feasibility of the method is verified by the typical reentry trajectory simulation,and the influence of the iterative times on the accuracy is analyzed.Simulation results show that iterative three times achieves the best effect.  相似文献   
82.
多飞行器追踪动态目标是一个协同控制问题,需要根据目标飞行状态,协同各个追踪飞行器的飞行状态,最终能够在某动态的最佳点实现同时到达。考虑到目标具有较强的机动性,轨迹通常为非线性的,设计了一种基于非线性轨迹预测的、以剩余时间为控制变量的一致性控制方案。仿真结果表明,提出的控制方案能够实现空间位置相距较远的多飞行器动态追踪,具有较好的灵活性和收敛性,目标轨迹的预测结果与实际轨迹误差较小,恰当的轨迹估计有助于缩短追踪时间,提高追踪效率。  相似文献   
83.
针对单一的Sine模型算法无法与临近空间高超声速目标滑跃式轨迹准确匹配,现有的交互多模型(IMM)算法跟踪效果也不够理想的问题,提出一种基于多重贝叶斯准则的自适应交互式多Sine模型(Sine-AIMM)临近空间高超声速滑跃式目标跟踪算法.算法采用多个Sine模型对滑跃式轨迹进行匹配,并利用多重贝叶斯准则在线调整各模型...  相似文献   
84.
In order to apply the air fin successfully and ensure the maneuverability of hypersonic vehicle, a key problem to be studied urgently is the heat flux brought by the fin mounting gap. The appearance of mounting gap and fin shaft can induce many complex flow structures which need more attentions to be investigated. Under Ma 6, Nano-tracer-based Planar Laser Scattering (NPLS) and Temperature Sensitive Paints (TSP) were applied to visualize and measure transient flow structures and heat flux distribution of a swept fin-induced flow field with different height mounting gaps. Complementarily, Reynolds-averaged N-S equations were solved with k-ω SST turbulent model. The heat flux distribution results of numerical simulation and TSP observed the change of high heat flux region with different mounting gap, both in position and magnitude. The streamlines based on Computational Fluid Dynamics (CFD) and flow visualization results obtained by NPLS revealed the cause of high heat flux region. The high heat flux region in this flow field is mainly related to the reattachment of vortex and flow stagnation. The increase of gap height can lead to stronger gap overflow and shaft-induced horseshoe vortex, which are source of the high heat flux around the fin. The case with the highest mounting gap (4 mm) en-counters the most severe aerodynamic heating, both on the surface of fin and plate. Thus, under the premise of ensuring the flexibility of the fin, the gap should be set as small as possible.  相似文献   
85.
Multirotor has been applied to many military and civilian mission scenarios. From the perspective of reliability, it is difficult to ensure that multirotors do not generate hardware and software failures or performance anomalies during the flight process. These failures and anomalies may result in mission interruptions, crashes, and even threats to the lives and property of human beings. Thus, the study of flight reliability problems of multirotors is conductive to the development of the drone industry and has theoretical significance and engineering value. This paper proposes a reliable flight performance assessment method of multirotors based on an Interacting Multiple Model Particle Filter (IMMPF) algorithm and health degree as the performance indicator. First, the multirotor is modeled by the Stochastic Hybrid System (SHS) model, and the problem of reliable flight performance assessment is formulated. In order to solve the problem, the IMMPF algorithm is presented to estimate the real-time probability distribution of hybrid state of the established SHS-based multirotor model, since it can decrease estimation errors compared with the standard interacting multiple model algorithm based on extended Kalman filter. Then, the reliable flight performance is assessed with health degree based on the estimation result. Finally, a case study of a multirotor suffering from sensor anomalies is presented to validate the effectiveness of the proposed method.  相似文献   
86.
During the conceptual design of a re-entry vehicle, the vehicle shape and geometry can be varied and its impact on performance can be evaluated. In this study, the shape optimization of two classes of vehicles has been studied: a capsule and a winged vehicle. Their aerodynamic characteristics were analyzed using local-inclination methods, automatically selected per vehicle segment. Entry trajectories down to Mach 3 were calculated assuming trimmed conditions. For the winged vehicle, which has both a body flap and elevons, a guidance algorithm to track a reference heat-rate was used. Multi-objective particle swarm optimization was used to optimize the shape using objectives related to mass, volume and range. The optimizations show a large variation in vehicle performance over the explored parameter space. Areas of very strong non-linearity are observed in the direct neighborhood of the two-dimensional Pareto fronts. This indicates the need for robust exploration of the influence of vehicle shapes on system performance during engineering trade-offs, which are performed during conceptual design. A number of important aspects of the influence of vehicle behavior on the Pareto fronts are observed and discussed. There is a nearly complete convergence to narrow-wing solutions for the winged vehicle. Also, it is found that imposing pitch-stability for the winged vehicle at all angles of attack results in vehicle shapes which require upward control surface deflections during the majority of the entry.  相似文献   
87.
针对高超声速飞行器动力学模型强耦合、非对称时变迎角限制、气动参数高度不确定以及跟踪误差收敛速率要求高等问题,设计了一种考虑非对称时变迎角限制的高超声速飞行器固定时间非奇异切换控制策略。为了解决非对称时变迎角限制问题,首先限制迎角虚拟控制器的幅值并设计固定时间误差补偿系统补偿迎角虚拟控制器饱和带来的不利影响,然后设计了一种新的光滑切换的非对称时变障碍函数限制迎角跟踪误差,从而使迎角满足非对称时变限制。光滑切换技术以及固定时间收敛技术也应用于其他虚拟控制律和实际控制律的设计中,以避免奇异值问题并且保证闭环系统的固定时间稳定。此外,设计了一种固定时间稳定的鲁棒补偿器用以补偿系统不确定性带来的不利影响。严格的数学推导证明了本文方法的正确性,仿真结果验证了本文方法的有效性和优越性。  相似文献   
88.
Recently, unmanned aerial vehicles (UAVs) acting as relay platforms have attracted considerable attention due to the advantages of extending coverage and improving connectivity for long-range communications. Specifically, in the scenario where the access point (AP) is mobile, a UAV needs to find an efficient path to guarantee the connectivity of the relay link. Motivated by this fact, this paper proposes an optimal design for beamforming (BF) and UAV path planning. First of all, we study a dual-hop amplify-and-forward (AF) wireless relay network, in which a UAV is used as relay between a mobile AP and a fixed base station (BS). In the network, both of the AP and the BS are equipped with multiple antennas, whereas the UAV has a single antenna. Then, we obtain the output signal~to-noise ratio (SNR) of the dual-hop relay network. Based on the criterion of maximizing the output SNR, we develop an optimal design to obtain the solution of the optimal BF weight vector and the UAV heading angle. Next, we derive the closed-form outage probability (OP) expression to investigate the performance of the dual-hop relay network conveniently. Finally, computer simulations show that the proposed approach can obtain nearly optimal flying path and OP performance, indicating the effectiveness of the proposed algorithm. Furthermore, we find that increasing the antenna number at the BS or the maximal heading angle can significantly improve the performance of the considered relay network.  相似文献   
89.
针对无人机在挂载导弹飞行和发射导弹时,无人机机翼由于受到多种载荷影响所产生的应力应变,应用ANSYS软件动力学分析,计算模拟了机翼在受到多种载荷影响时所产生的应力分布和应变量。分析结果表明,由于外挂物重量和机翼周围气动流场的影响,机翼会产生不同程度的颤振和扭转,其研究结果对合理设计机翼结构具有一定的参考意义。  相似文献   
90.
卫锋  贺旭照  贺元元  吴颖川 《推进技术》2014,35(11):1441-1447
为了研究三维内转式进气道对飞行器力矩特性的影响规律,对一系列设计状态为Ma=6.5的内转式进气道展开力矩特性研究。对不同布局形式,进气形式以及基准流场中心体的内转式进气道对飞行器力矩特性的影响展开分析研究。研究结果表明,对于内转式进气道而言,有连接板的水滴型进气道双侧布局力矩特性较优,且容易满足飞行器总体需求;布局形式对进气道的力矩特性影响最显著,进气形式对侧滑力矩的影响比基准流场中心体影响更明显,而抬头力矩和滚转力矩受基准流场中心体影响更加突出;中心体在0~0.1Rs(Rs为基准流场入口半径)变化时,抬头力矩变化不大,而在0.1~0.2Rs抬头力矩变化明显。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号