首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1984篇
  免费   616篇
  国内免费   340篇
航空   1752篇
航天技术   469篇
综合类   191篇
航天   528篇
  2024年   9篇
  2023年   57篇
  2022年   96篇
  2021年   120篇
  2020年   116篇
  2019年   106篇
  2018年   101篇
  2017年   127篇
  2016年   129篇
  2015年   118篇
  2014年   153篇
  2013年   117篇
  2012年   153篇
  2011年   178篇
  2010年   124篇
  2009年   139篇
  2008年   105篇
  2007年   125篇
  2006年   126篇
  2005年   85篇
  2004年   62篇
  2003年   79篇
  2002年   57篇
  2001年   59篇
  2000年   47篇
  1999年   52篇
  1998年   60篇
  1997年   47篇
  1996年   40篇
  1995年   40篇
  1994年   41篇
  1993年   19篇
  1992年   15篇
  1991年   13篇
  1990年   9篇
  1989年   9篇
  1988年   5篇
  1987年   1篇
  1984年   1篇
排序方式: 共有2940条查询结果,搜索用时 250 毫秒
891.
针对某型航空活塞发动机在含铅汽油条件下因排气门积铅而出现严重的气缸压缩性衰减问题,通过对排气门上沉积物的微观形貌及成分分析,结合该型发动机的结构设计和实际运行环境分析这种排气门沉积物的形成机理.研究表明:空中慢车时排气门运行温度过低是导致污染物在排气门上沉积的根本原因,而空中慢车时的螺旋桨风车因素和该型发动机燃油系统设计特性是导致排气门运行温度过低的主要原因。据此提出将螺旋桨风车转速降低200 r/min和小功率调贫控制排气温度在427 ℃以上等提高气门运行温度的方案,经实际运行测试有效。  相似文献   
892.
何辉  毛军逵  刘方圆  杨悦  范俊  刘兆颖  徐启明 《推进技术》2020,41(10):2283-2291
针对有主动间隙控制的某型高压涡轮,建立了考虑发动机退化的叶尖间隙预估模型,重点研究了发动机在长期使用、性能退化过程中涡轮前燃气温度和蠕变变形对叶尖间隙的影响。研究中,首先分析了间隙预测中发动机性能退化影响的引入方式,建立了对应的间隙预估流程。随后以某型发动机典型工作历程为对象,对比研究了传统间隙控制方案、考虑发动机性能退化影响两种条件下的涡轮叶尖间隙尺度变化规律,并据此开展了间隙控制策略的优化调整。研究中发现,由于发动机性能的退化,导致涡轮前燃气温度升高,使得机匣、轮盘和叶片的热变形量增大,其中在最大巡航阶段对机匣的影响最大,其伸长量达到了6.914mm,与未退化前相比增大了17%,同时由于发动机的长期使用,叶片和轮盘受蠕变变形影响,导致叶尖间隙的变化。研究结果表明,采用优化后的主动间隙控制方案,各个工况下的叶尖间隙值均控制在合理范围内,尤其在高温起飞阶段,与退化状态下的间隙值相比提高了53%,有效避免了叶片严重碰摩等故障发生。  相似文献   
893.
现有等直管内激波串的预测理论并未考虑截面积变化以及壁面传热等条件,因此发展了考虑壁面温度、附面层分离和截面积变化的激波串理论分析模型,并与实验结果进行了对比。研究表明,该模型可快速计算隔离段参数的沿程变化,激波串前缘位置的差值在26%以内。此外,对变截面管道激波串进行了理论分析和数值模拟,研究发现数值解和理论解的差值为11%。   相似文献   
894.
在传统冷壁热流模拟方法的基础上,进一步提出以热壁温度及热流密度的时序变化曲线为控制目标的燃气流热试验工况确定方法,即利用壁温控制目标与实测值的偏差对热壁热流控制目标做一定修正,以尽可能消除和弥补前期试验误差,同时利用300K冷壁边界热流密度数据库插值迭代方法,快速确定一定气动热模拟所需燃气流温度,解决了沿飞行轨迹瞬态热试验技术难题之一。利用CFD数值模拟方法,建立了典型尖楔结构高/中温双路燃气流组合热试验300K冷壁边界热流密度数据库,并针对典型尖楔结构沿某飞行轨迹9个典型状态气动热模拟需求,确定相应双路燃气流热模拟参数。相关数值计算结果显示,驻点区域热流密度平均模拟偏差为4.5%,平板区热流密度平均模拟偏差为4.6%,两者最大模拟偏差均不大于8%,满足工程试验精度要求。同时,瞬态热分析结果显示第45s时,距驻点1mm处最大温度梯度达到21K/mm,距驻点10.1mm处最大温度梯度达到18K/mm,满足气动热大温度梯度效应需求。   相似文献   
895.
针对一种带有气膜冷却结构的涡轮一级导向叶片进行气-固-热耦合数值模拟,通过比较考虑/不考虑热辐射的温比和综合冷却效率,分析了多种辐射因素对叶片表面温度和冷却性能的影响。结果表明:入口黑体辐射温度在1200~1900K之间,叶片表面发射率在0.3~0.7之间时,考虑热辐射作用均会使叶片表面温度明显上升。入口黑体辐射温度1600K,叶片表面发射率为0.5时,叶片压力面温度整体上升约100K,叶片表面最高温度点(1350K)温度上升约50K;气体辐射对叶片吸力面和尾缘区域造成5%左右的温升;考虑辐射作用使得叶片综合冷却效率下降,叶片前缘和压力面尽管布置密集的气膜孔仍然难以满足冷却需求,综合冷却效率下降至0.3以下。   相似文献   
896.
为了研究三维编织C/C复合材料高温氧化环境下的力学性能,在大气环境下开展了有、无抗氧化涂层三维四向C/C复合材料平板试验件700℃时的拉伸试验和拉/拉疲劳试验。拉伸试验结果表明:无涂层三维四向C/C复合材料在700℃保温1h和2h后,强度分别下降至有涂层的70.33%和44.57%,弹性模量分别下降至有涂层的58.57%和38.99%,氧化后的总拉伸应变比有涂层的大幅度提升,材料破坏时无刚度突降现象。疲劳试验结果表明:有涂层三维四向C/C复合材料的剩余刚度先增加,而后保持,最后突降,应力水平为83%经10~5循环后剩余强度比初始强度提高了19.75%;无涂层三维四向C/C复合材料的剩余刚度先增加后降低,直至材料完全破坏,应力水平为75%经10~5循环后剩余强度比初始强度降低了20.40%。  相似文献   
897.
为研究温包型温度传感器在航空发动机和飞机控制系统中的应用,对温包型温度传感器的充填工质进行了分析。根据工质的热力学特性及传感器的使用温度范围,将温包分为气态、液态、蒸汽态3种类型,阐述了不同类别工质的物理特性与温度变化的关系,汇集了常见工质的主要特性参数,归纳了根据传感器用途选择工质的原则。结果表明:气态工质的计算符合范德华方程;液态工质则按照体积膨胀计算;蒸汽态工质可按照项-谭方程进行设计计算。根据以上方法设计的不同温包已在多种发动机和飞机附件中得到应用。  相似文献   
898.
讨论了航空发动机涡轮导向叶片沿程温增试验方法,分析了温增特性和影响沿程温增的试验参数及其相似性。  相似文献   
899.
The compression creep deformation of the high volume fraction of SiC particles reinforced Al-Mg-Si composite fabricated by pressure-less infiltration was investigated. The experimental results show that the creep stress exponents are very high at temperatures of 673 K, 723 K and 773 K, and if taking the threshold stress into account, the true stress exponent of minimum creep strain rate is still approximately 5, although the volume fraction of reinforcements is very high. The creep strain rate in the high volume fraction rein- forced aluminum alloy matrix composites is controlled by matrix lattice diffusion. It is found that the creep-strengthening effect of high volume fraction of silicon carbide particles is significant, although the particles do not form effective obstacles to dislocation motion.  相似文献   
900.
在空气介质阻挡放电中,利用氮分子振动谱线和氮分子离子的转动谱线,研究了振动温度和转动温度在两极板间的分布情况。结果表明:越靠近极板振动温度越小,中间振动温度最高;而转动温度在两极板间基本保持不变。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号