首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   260篇
  免费   136篇
  国内免费   50篇
航空   297篇
航天技术   47篇
综合类   18篇
航天   84篇
  2024年   1篇
  2023年   3篇
  2022年   24篇
  2021年   15篇
  2020年   24篇
  2019年   22篇
  2018年   24篇
  2017年   14篇
  2016年   19篇
  2015年   21篇
  2014年   22篇
  2013年   24篇
  2012年   24篇
  2011年   32篇
  2010年   14篇
  2009年   7篇
  2008年   16篇
  2007年   13篇
  2006年   18篇
  2005年   10篇
  2004年   7篇
  2003年   5篇
  2002年   9篇
  2001年   8篇
  2000年   8篇
  1999年   11篇
  1998年   3篇
  1997年   5篇
  1996年   5篇
  1995年   3篇
  1994年   6篇
  1993年   5篇
  1992年   3篇
  1991年   5篇
  1990年   3篇
  1989年   4篇
  1988年   6篇
  1987年   2篇
  1986年   1篇
排序方式: 共有446条查询结果,搜索用时 15 毫秒
351.
航空液压泵磨损状况预测   总被引:2,自引:1,他引:1  
磨损是航空液压泵典型的渐进性故障之一,因磨损量难以测量,对磨损状况进行准确的预测比较困难.针对上述问题,提出了基于多尺度数据的支持向量机预测方法,该方法将支持向量机用于时间序列预测的基本理论和数据多尺度分解、相空间重构方法结合,能更有效地挖掘时间序列的内在联系及变化规律.采用回油流量作为反映航空液压泵磨损状况的敏感信号,将其分解为趋势项和随机项,采用多尺度支持向量机作等维信息一步预测和多步预测,利用网格方法对预测模型参数寻优.对比传统支持向量机算法分析其预测精度,结果表明:多尺度支持向量机模型预测精度更高,适于中长期预测.   相似文献   
352.
The fuel regression rate is an important parameter in the design process of the hybrid rocket motor. Additives in the solid fuel may have influences on the fuel regression rate, which will affect the internal ballistics of the motor. A series of firing experiments have been conducted on lab-scale hybrid rocket motors with 98% hydrogen peroxide (H2O2) oxidizer and hydroxyl terminated polybutadiene (HTPB) based fuels in this paper. An innovative fuel regression rate analysis method is established to diminish the errors caused by start and tailing stages in a short time firing test. The effects of the metal Mg, Al, aromatic hydrocarbon anthracene (C14H10), and carbon black (C) on the fuel regression rate are investigated. The fuel regression rate formulas of different fuel components are fitted according to the experiment data. The results indicate that the influence of C14H10 on the fuel regression rate of HTPB is not evident. However, the metal additives in the HTPB fuel can increase the fuel regression rate significantly.  相似文献   
353.
为获得燃油汽心泵内气态区域的形成过程及形态的变化规律,基于renormalization group(RNG) k-ε双方程湍流模型与Schnerr-Sauer空化相变模型,对径向直叶片燃油汽心泵进行了整体三维建模与气液两相定常数值模拟,分析转速、进口节流活门开度、出口压力等因素对燃油汽心泵内气态区域的影响.结果表明:一定转速范围内气态区域随转速增加而扩大;转速不变时出口压力增加会使气态区域范围减小;气态区域扩张至极限位置即叶轮直径外,燃油汽心泵进入不稳定工况.RNG k-ε双方程湍流模型和与Schnerr-Sauer空化相变模型适用于燃油汽心泵汽心形态的数值模拟.   相似文献   
354.
在考虑地球非球形引力J2项摄动时,用Lyaounov势函数法推导了连续和离散两种控制方法,以保持与控制运行于椭圆轨道的小卫星编队飞行位置。建立了相应的数学模型,并证明两种控制方法均可实现系统的稳定。理论分析和仿真结果表明,两种方法均能在规定的时间内将伴随星控制到理想位置,并在相同的轨道条件下比较了两者的燃料消耗。  相似文献   
355.
刘明  邵晓巍  段登平 《上海航天》2007,24(3):10-14,19
基于椭圆轨道的两卫星相对运动方程,分析了参考星轨道为椭圆的编队飞行成立条件,给出了队形设计方法。讨论了J2项摄动对椭圆编队队形的影响。通过改变两卫星偏心率之差Δe调整环绕星的偏心率以消除部分J2项摄动。仿真结果表明,采用该法设计椭圆轨道编队队形可减少主动控制,节省燃料。  相似文献   
356.
带液体晃动航天器的非线性自适应反馈控制   总被引:1,自引:0,他引:1  
针对一种带液体燃料晃动的航天器,同时考虑液体晃动参数的不确定性,提出了一种参数自适应非线性反馈控制方法,抑制航天器的俯仰及横向运动,同时抑制液体燃料的晃动.针对航天器与液体燃料的固液耦合非线性模型,采用基于Lyapunov函数的设计方法设计系统的反馈控制律,运用间接自适应方法设计参数自适应律,并使用参数映射等手段来保证参数估计值在合理取值范围内.仿真结果表明,控制器可以使航天器达到渐近稳定,进而验证了控制器的有效性.  相似文献   
357.
柱塞杆与座零件形成的摩擦副,制造过程中极易造成该位置过度变形,导致异常磨损以及泵性能失效。因此,有必要分析轴向柱塞泵球面摩擦副制造工艺过程。以制造工艺对摩擦副的应变为研究对象,利用应力应变的有限元仿真,分析了压配过程和冲头工装对摩擦副结构的影响,以及变形后摩擦副间隙内的流场力分布情况,得出工艺参数应选择适当的应力值(数值800~1000N),并选用约60°结构的冲头工装执行冲铆工序的结论。通过有限元分析,为提高泵合格率提供了理论支撑。  相似文献   
358.
针对航天器大范围轨道交会提出了二冲量燃料最省机动方案的数值寻优算法及多冲量机动方案的啸声境遗传算法.利用共面圆\椭圆轨道间的转移实例对两种算法正确小生境遗传算法.利用共面圆\椭圆轨道间的转移实例对两种算法正确性进行了验证,通过仿真实验,比较了大范围交会轨道机动中不同冲量次数对总燃料消耗的影响,分析得出了非共面轨道交会机动时燃料最省的指导性方案.  相似文献   
359.
针对将半长轴、升交点赤经、纬度辐角均不同的低轨微纳卫星群部署到同一轨道面不同目标相位的星座部署问题,提出一种基于Kuhn-Munkres(KM)匹配的星座部署优化方法。通过KM算法实现卫星和目标纬度辐角的优化匹配,充分利用J2摄动,使升交点赤经借助半长轴和纬度辐角的部署而得到同步修正,从而节约燃料。仿真结果表明,相比于传统部署方法,在相同约束下,优化后的部署方法使各星平均燃耗减少,各星燃耗量均衡性提高。弥补了传统同轨星座部署中将各星初始位置简化为空间一点且忽略部署过程中的升交点赤经漂移的不足。采用有限常值推力实现轨道机动,适用于携带微推力推进系统的微纳卫星。  相似文献   
360.
为保证月球探测器进入姿态调整段时具有充分的高度与速度余量,本文提出一种基于控制变量参数化的月球探测器动力下降段最优轨迹求解方法。在三维探测器软着陆动力学模型基础上,将月球探测器软着陆制导律设计等效为燃料最优约束下的探测器俯仰角控制问题,利用控制变量参数化(Control Variables Parameterization, CVP)方法将该控制问题中的控制变量与约束条件转化为非线性规划问题求解,并引入时间尺度变换,将着陆时间序列加入待规划参数,进而求得满足精度的最优数值解。蒙特卡罗仿真实验表明,与传统的显式制导律相比,本文提出的参数化制导方法在动力下降段燃料更省,动力下降段的起始高度在±20%范围内波动时,仍能以高精度速度和高度指标完成末制导。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号