首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3723篇
  免费   972篇
  国内免费   608篇
航空   2832篇
航天技术   1171篇
综合类   555篇
航天   745篇
  2024年   16篇
  2023年   68篇
  2022年   145篇
  2021年   166篇
  2020年   194篇
  2019年   189篇
  2018年   180篇
  2017年   169篇
  2016年   186篇
  2015年   176篇
  2014年   217篇
  2013年   216篇
  2012年   271篇
  2011年   274篇
  2010年   221篇
  2009年   225篇
  2008年   196篇
  2007年   200篇
  2006年   198篇
  2005年   159篇
  2004年   139篇
  2003年   175篇
  2002年   145篇
  2001年   102篇
  2000年   114篇
  1999年   110篇
  1998年   105篇
  1997年   85篇
  1996年   111篇
  1995年   91篇
  1994年   88篇
  1993年   77篇
  1992年   71篇
  1991年   63篇
  1990年   68篇
  1989年   49篇
  1988年   31篇
  1987年   9篇
  1986年   3篇
  1984年   1篇
排序方式: 共有5303条查询结果,搜索用时 281 毫秒
911.
《中国航空学报》2021,34(11):79-93
In the current state-of-the-art, high-loss flow in the endwall significantly influences compressor performance. Therefore, the control of endwall corner separation in compressor blade rows is important to consider. Based on the previous research of the Blended Blade and EndWall (BBEW) technique, which can significantly reduce corner separation, in combination with a non-axisymmetric endwall, the full-BBEW technique is proposed in this study to further reduce the separation in endwall region. The principle of the unchanged axial passage area is considered to derive the geometric method for this technique. Three models are further classified based on different geometric characteristics of this technique: the BBEW model, Inclining-Only EndWall (IOEW) model, and full-BBEW model. The most effective design of each model is then found by performing several optimizations at the design point and related numerical investigations over the entire operational conditions. Compared with the prototype, the total pressure loss coefficient decreases by 7%–9% in the optimized full-BBEW at the design point. Moreover, the aerodynamic blockage coefficient over the entire operational range decreases more than the other models, which shows its positive effect for diffusion. This approach has a larger decrease at negative incidence angles where the intersection of the boundary layer plays an important role in corner separation. The analysis shows that the blended blade profile enlarges the dihedral angle and creates a span-wise pressure gradient to move low momentum fluid towards the mainstream. Furthermore, the inclining hub geometry accelerates the accumulated flow in the corner downstream by increasing the pressure gradient. Overall, though losses in the mainstream grow, especially for large incidences, the full-BBEW technique effectively reduces the separation in corners.  相似文献   
912.
《中国航空学报》2021,34(10):282-292
The accurate measurement of surfaces of large aviation components is vital for the assessment of manufacturing and assembly quality of such components. To satisfy the measurement requirement of large-size components, most current researches pay more attention to combined measurement methods utilizing different measuring instruments, but the related researches on error analysis and optimization methods are not taken enough attention. This paper proposes a combined laser-assisted measurement method with feature enhancement techniques, and it also develops an error propagation model of the main factors affecting the overall measurement error in detail. Firstly, the surface of a large-size component is measured by the measurement system at multiple stations. Secondly, a control point coordinate system is established as a bridge to unify all local measurement data into the global coordinate system. To improve the overall measurement accuracy, the pixel extraction error as a key factor causing the overall measurement error is analyzed in detail. Next, the error propagation model is established, and some optimization strategies of layout for minimizing measurement error and transformation error are researched. Finally, experiments are carried out to verify the effectiveness of the proposed method. The results show that the measurement error of the proposed method reaches 0.073% and 0.14% with a 1D standard ruler and a flat plate, respectively.  相似文献   
913.
为了研究全光相机对火焰等半透明介质的光场采样并优化全光相机的参数,基于近轴光学,建立了全光相机的逆向光线追迹模型。在此基础上,针对弥散介质沿采集方向的半透明特性,提出了像素采样锥形角以及物方采样角度等评价光线角度采样的性能指标,据此分析了全光相机像素和微透镜的位置对光场采样特性的影响,以及全光相机光学参数变化对光线方向采样性能的影响。结果表明:采集火焰辐射光场时,较小的微透镜直径有利于提高光场采样的单方向性,并减小主镜头入瞳直径,而较小的主镜头焦距有利于增大物方采样角度。  相似文献   
914.
无通风直升机动力舱火灾温度场数值模拟   总被引:2,自引:2,他引:0  
采用大涡模拟(LES)技术,针对某型直升机动力舱建立了火灾模型,选择油池火灾作为研究对象,并对火灾场景进行了设计.利用数值模拟的方法研究了不同位置火源动力舱的火灾场,分析了火源位置对火灾热释放速率、速度场和温度场的影响.结果表明:无通风条件下,火源位置的改变影响动力舱火灾的蔓延,并且当火源位于动力舱底部距前防火墙1/4处时,火灾强度较大,对舱内部件的破坏较为严重.因此,在防火设计中应重点对该部位火灾区域进行防范.研究结果可为动力舱灭火系统设计提供参考.   相似文献   
915.
提出了采用多根对称分布载流导线构成原子分束器的方法,包括三导线和四导线磁导引。阐述了原子分束器的分束机制,用Ansoft Maxwell 2D软件计算给出了部分载流导线移动到不同位置时的磁场分布图。通过分析了导引中心的变化,发现只要通过改变载流导线之间的相对位置就可以来实现从单路到双路导引和三路导引的转换。由此分别设计由3根对称分布载流导线构成的原子双路分束器和4根对称分布载流导线构成三路分束器,然后运用Monte Carlo方法模拟验证其原子分束功能。最后以三线对称分布分束器为基础构成Mach-Zehnder原子磁干涉仪。  相似文献   
916.
通过对旋转变压器角位移测量原理分析,提出了基于粗精通道的改进性方案,利用多模块组合设计,研制出一种新型的角位移测量系统和相应的测量算法。试验表明,改进后的组合测量系统最大误差可控制在±0.01°以内,有效地提高了火控系统角位移测量精度。  相似文献   
917.
基于N-S方程建立了某型发动机喷管及其喷流流场的数值计算模型,利用辐射传输方程(RTE)积分法编制了红外辐射特征计算程序,得到了此喷管在非加力状态下工作时的红外辐射特征分布,同时利用模型试验测量得到该喷管的红外辐射特征分布。给出了在3.0~5.0μm光谱范围内的红外辐射特征数值模拟结果和试验测量结果,经比较表明:数值模拟结果和试验测量结果吻合良好。  相似文献   
918.
斜切径向旋流器环形燃烧室数值模拟   总被引:3,自引:1,他引:2       下载免费PDF全文
采用三维贴体坐标系统,对包括突扩扩压器、帽罩、旋流杯、火焰筒以及内、外环通道的环形燃烧室全流程2相燃烧流场进行数值研究。采用k-ε湍流模型、2阶矩-EBU湍流燃烧模型、6通量辐射模型和颗粒轨道模型等模拟2相湍流燃烧流动,分析了进口工况对全流程燃烧流场的影响。计算结果表明:随着进口工况的改变,燃烧室出口温度场也发生相应变化;计算结果与试验数据比较表明:所用的数学模型合理、计算方法可行,其结果可为某型燃烧室优化设计提供可靠依据。  相似文献   
919.
王利  王同庆 《航空动力学报》2010,25(9):2041-2049
基于一种消费电子类的麦克风设计改装了一种经济型测量传声器,并设计了校准实验装置对其进行校准.对校准实验装置的可靠性进行了验证,利用该装置对自制传声器的幅值、相位进行了校准,将校准后的传声器安装在实验室的流管实验装置上进行测量,并和B&K(Bruel&Kjaer)公司的4938型传声器同样条件下的测量结果进行比较,对比结果显示自制传声器经过校准以后可以作为测量传声器应用.   相似文献   
920.
光学压力敏感涂料测量技术及其 在内流场的应用   总被引:1,自引:0,他引:1  
介绍了应用基于发光强度的全域压力测量方法进行叶片表面压力分布的一系列实验结果.在自主建立光学压力测量系统和自主研发国产压力敏感涂料的基础上,对高亚声速叶栅风洞出口处大弯度孤立叶片吸力面和对转压气机实验平台出口整流叶片吸力面的压力分布进行了测量,并采用传统电子静压扫描装置在高亚声速叶栅风洞中进行了同步测量.光学压力测量与电子压力扫描结果的对比表明所建立的光学压力测量系统可用于内流场测量,其精度达到了工程应用水平.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号