首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1583篇
  免费   373篇
  国内免费   222篇
航空   1037篇
航天技术   496篇
综合类   137篇
航天   508篇
  2024年   11篇
  2023年   47篇
  2022年   66篇
  2021年   83篇
  2020年   98篇
  2019年   94篇
  2018年   86篇
  2017年   63篇
  2016年   95篇
  2015年   85篇
  2014年   109篇
  2013年   99篇
  2012年   109篇
  2011年   123篇
  2010年   107篇
  2009年   101篇
  2008年   79篇
  2007年   71篇
  2006年   87篇
  2005年   75篇
  2004年   65篇
  2003年   55篇
  2002年   45篇
  2001年   50篇
  2000年   40篇
  1999年   44篇
  1998年   41篇
  1997年   25篇
  1996年   16篇
  1995年   16篇
  1994年   28篇
  1993年   17篇
  1992年   9篇
  1991年   16篇
  1990年   10篇
  1989年   7篇
  1988年   4篇
  1987年   2篇
排序方式: 共有2178条查询结果,搜索用时 156 毫秒
621.
随着数字化技术、机器人技术、工装技术和测量技术的飞速发展,我们已经可以窥见未来飞机装配工厂的一些雏形。未来飞机装配工厂中应该能够看到这样一组场景:机器人总动员、全民公转、乐高大电影、脉动时空、激光大世界、无人之境。到那时,飞机装配工厂本身就可以称为一座航空主题乐园,向人们展示航空科技的无限魅力。  相似文献   
622.
核工业放射性勘查计量站于2015年组织西南、中南、华南和华东四家计量站实施了国内地面放射性测量模型标准装置的量值溯源比对,比对模型为核工业放射性勘查计量站的地面模型。从比对测量结果归一化偏差分析,仅有个别仪器在钾含量较低的YM1和钾含量存在争议的YM3模型的归一化偏差大于1,说明比对过程严谨、比对方法正确、结果可信。从比对测量结果与标称值比较分析,仍是YM1和YM3模型的钾含量相对偏差超过5%,其他均在8%不确定度之内,说明核工业放射性勘查计量站的地面模型量值稳定。  相似文献   
623.
The main challenge in real-time precise point positioning (PPP) is that the data outages or large time lags in receiving precise orbit and clock corrections greatly degrade the continuity and real-time performance of PPP positioning. To solve this problem, instead of directly predicting orbit and clock corrections in previous researches, this paper presents an alternative approach of generating combined corrections including orbit error, satellite clock and receiver-related error with broadcast ephemeris. Using ambiguities and satellite fractional-cycle biases (FCBs) of previous epoch and the short-term predicted tropospheric delay through linear extrapolation model (LEM), combined corrections at current epoch are retrieved and weighted with multiple reference stations, and further broadcast to user for continuous enhanced positioning during outages of orbit and clock corrections. To validate the proposed method, two reference station network with different inter-station distance from National Geodetic Survey (NGS) network are used for experiments with six different time lags (i.e., 5 s, 10 s, 15 s, 30 s, 45 s and 60 s), and one set of data collected by unmanned aerial vehicle (UAV) is also used. The performance of LEM is investigated, and the troposphere prediction accuracy of low elevation (e.g., 10–20degrees) satellites has been improved by 44.1% to 79.0%. The average accuracy of combined corrections before and after LEM is used is improved by 12.5% to 77.3%. Without LEM, an accuracy of 2–3 cm can be maintained only in case of small time lags, while the accuracies with LEM are all better than 2 cm in case of different time lags. The performance of simulated kinematic PPP at user end is assessed in terms of positioning accuracy and epoch fix rate. In case of different time lags, after LEM is used, the average accuracy in horizontal direction is better than 3 cm, and the accuracy in up direction is better than 5 cm. At the same time, the epoch fix rate has also increased to varying degrees. The results of the UAV data show that in real kinematic environment, the proposed method can still maintain a positioning accuracy of several centimeters in case of 20 s time lag.  相似文献   
624.
通过对安全风险评估的三个因素进行归纳总结,并将其应用在装备维修保障中;分析研究了装备维修保障中的安全风险因素及其内在依附关系,建立了安全风险评估的两级指标;归纳总结了陆航装备维修保障的风险评估要素,可以为风险量化和有针对性地开展装备安全管理提供参考,为建立基于风险评估的装备维修策略提供依据。  相似文献   
625.
叶片毛坯的精确定位是叶片数控加工的核心问题,为了提高叶片数控加工质量,保证叶片各处余量分配均匀,本文以叶片进排气边的自适应数控加工中的检测定位为研究对象,提出了一种基于模型重构的配准定位方法.该方法利用偏置模型的叶片测量方式提高了测量精度,对基于重构的测量模型进行变形与定位分析,得出较优的定位参数.通过仿真试验和对比分析,论证了本文方法的正确性.  相似文献   
626.
Integer ambiguity fixing with uncalibrated phase delay (UPD) products can significantly shorten the initialization time and improve the accuracy of precise point positioning (PPP). Since the tracking arcs of satellites and the behavior of atmospheric biases can be very different for the reference networks with different scales, the qualities of corresponding UPD products may be also various. The purpose of this paper is to comparatively investigate the influence of different scales of reference station networks on UPD estimation and user ambiguity resolution. Three reference station networks with global, wide-area and local scales are used to compute the UPD products and analyze their impact on the PPP-AR. The time-to-first-fix, the unfix rate and the incorrect fix rate of PPP-AR are analyzed. Moreover, in order to further shorten the convergence time for obtaining precise positioning, a modified partial ambiguity resolution (PAR) and corresponding validation strategy are presented. In this PAR method, the ambiguity subset is determined by removing the ambiguity one by one in the order of ascending elevations. Besides, for static positioning mode, a coordinate validation strategy is employed to enhance the reliability of the fixed coordinate. The experiment results show that UPD products computed by smaller station network are more accurate and lead to a better coordinate solution; the PAR method used in this paper can shorten the convergence time and the coordinate validation strategy can improve the availability of high precision positioning.  相似文献   
627.
Ionosphere delay is very important to GNSS observations, since it is one of the main error sources which have to be mitigated even eliminated in order to determine reliable and precise positions. The ionosphere is a dispersive medium to radio signal, so the value of the group delay or phase advance of GNSS radio signal depends on the signal frequency. Ground-based GNSS stations have been used for ionosphere monitoring and modeling for a long time. In this paper we will introduce a novel approach suitable for single-receiver operation based on the precise point positioning (PPP) technique. One of the main characteristic is that only carrier-phase observations are used to avoid particular effects of pseudorange observations. The technique consists of introducing ionosphere ambiguity parameters obtained from PPP filter into the geometry-free combination of observations to estimate ionospheric delays. Observational data from stations that are capable of tracking the GPS/BDS/GALILEO from the International GNSS Service (IGS) Multi-GNSS Experiments (MGEX) network are processed. For the purpose of performance validation, ionospheric delays series derived from the novel approach are compared with the global ionospheric map (GIM) from Ionospheric Associate Analysis Centers (IAACs). The results are encouraging and offer potential solutions to the near real-time ionosphere monitoring.  相似文献   
628.
A new type of space debris in near geosynchronous orbit (GEO) was recently discovered and later identified as exhibiting unique characteristics associated with high area-to-mass ratio (HAMR) objects, such as high rotation rates and high reflection properties. Observations have shown that this debris type is very sensitive to environmental disturbances, particularly solar radiation pressure, due to the fact that its motion depends on the actual effective area, orientation of that effective area, reflection properties and the area-to-mass ratio of the object is not stable over time. Previous investigations have modelled this type of debris as rigid bodies (constant area-to-mass ratios) or discrete deformed body; however, these simplifications will lead to inaccurate long term orbital predictions. This paper proposes a simple yet reliable model of a thin, deformable membrane based on multibody dynamics. The membrane is modelled as a series of flat plates, connected through joints, representing the flexibility of the membrane itself. The mass of the membrane, albeit low, is taken into account through lump masses at the joints. The attitude and orbital motion of this flexible membrane model is then propagated near GEO to predict its orbital evolution under the perturbations of solar radiation pressure, Earth’s gravity field (J2), third body gravitational fields (the Sun and Moon) and self-shadowing. These results are then compared to those obtained for two rigid body models (cannonball and flat rigid plate). In addition, Monte Carlo simulations of the flexible model by varying initial attitude and deformation angle (different shape) are investigated and compared with the two rigid models (cannonball and flat rigid plate) over a period of 100?days. The numerical results demonstrate that cannonball and rigid flat plate are not appropriate to capture the true dynamical evolution of these objects, at the cost of increased computational time.  相似文献   
629.
Lots of ambiguities in un-differenced (UD) model lead to lower calculation efficiency, which isn’t appropriate for the high-frequency real-time GNSS clock estimation, like 1 Hz. Mixed differenced model fusing UD pseudo-range and epoch-differenced (ED) phase observations has been introduced into real-time clock estimation. In this contribution, we extend the mixed differenced model for realizing multi-GNSS real-time clock high-frequency updating and a rigorous comparison and analysis on same conditions are performed to achieve the best real-time clock estimation performance taking the efficiency, accuracy, consistency and reliability into consideration. Based on the multi-GNSS real-time data streams provided by multi-GNSS Experiment (MGEX) and Wuhan University, GPS + BeiDou + Galileo global real-time augmentation positioning prototype system is designed and constructed, including real-time precise orbit determination, real-time precise clock estimation, real-time Precise Point Positioning (RT-PPP) and real-time Standard Point Positioning (RT-SPP). The statistical analysis of the 6 h-predicted real-time orbits shows that the root mean square (RMS) in radial direction is about 1–5 cm for GPS, Beidou MEO and Galileo satellites and about 10 cm for Beidou GEO and IGSO satellites. Using the mixed differenced estimation model, the prototype system can realize high-efficient real-time satellite absolute clock estimation with no constant clock-bias and can be used for high-frequency augmentation message updating (such as 1 Hz). The real-time augmentation message signal-in-space ranging error (SISRE), a comprehensive accuracy of orbit and clock and effecting the users’ actual positioning performance, is introduced to evaluate and analyze the performance of GPS + BeiDou + Galileo global real-time augmentation positioning system. The statistical analysis of real-time augmentation message SISRE is about 4–7 cm for GPS, whlile 10 cm for Beidou IGSO/MEO, Galileo and about 30 cm for BeiDou GEO satellites. The real-time positioning results prove that the GPS + BeiDou + Galileo RT-PPP comparing to GPS-only can effectively accelerate convergence time by about 60%, improve the positioning accuracy by about 30% and obtain averaged RMS 4 cm in horizontal and 6 cm in vertical; additionally RT-SPP accuracy in the prototype system can realize positioning accuracy with about averaged RMS 1 m in horizontal and 1.5–2 m in vertical, which are improved by 60% and 70% to SPP based on broadcast ephemeris, respectively.  相似文献   
630.
In this paper, by using quaternion models, the problem of attitude control is investigated for a class of flexible satellites. Two control laws are presented for the considered flexible satellite models to guarantee convergence of the closed-loop systems without using angular velocity measurement. One is in the form of a partial state feedback for the case where the modal variable is available, and the other is in the form of an observer-based partial state feedback for the case where the modal variable cannot be measured. Finally, an example is employed to illustrate the effectiveness of the proposed control laws.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号