首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   24篇
  国内免费   7篇
航空   91篇
航天技术   101篇
综合类   8篇
航天   19篇
  2024年   1篇
  2023年   3篇
  2022年   4篇
  2021年   4篇
  2020年   7篇
  2019年   8篇
  2018年   9篇
  2017年   6篇
  2016年   9篇
  2015年   3篇
  2014年   14篇
  2013年   11篇
  2012年   11篇
  2011年   18篇
  2010年   17篇
  2009年   15篇
  2008年   11篇
  2007年   5篇
  2006年   12篇
  2005年   9篇
  2004年   8篇
  2003年   10篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有219条查询结果,搜索用时 531 毫秒
101.
In this paper, we present our recent work on developing an updated global model of the ionospheric F2 peak height hmF2 parameter by combining data from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC/FORMOSAT-3) radio occultation (RO) measurements and from the extended global ionosonde stations. In particular, 10 Chinese ionosonde stations’ data are newly introduced into this study. The modeling technique used is based on a two-layer empirical orthogonal function (EOF) expansion. Global distributions of hmF2 maps calculated using the newly constructed global model and the one provided by the International Reference Ionosphere model (IRI-ITU-R) are compared with the global distributions of hmF2 obtained by the COSMIC RO measurements and quantitative statistical analysis of the differences between the model results and those of the COSMIC RO measurements is made for the low (2008) and high (2012) solar activity years. The obtained average root-mean-square differences (RMSEs) for our model are 27.7 km (11.1%) and 31.0 km (9.8%), respectively for the years 2008 and 2012, whereas those for the IRI-ITU-R model are 39.9 km (16.9%) and 35.0 km (11.6%), respectively. Comparison of the results calculated both by our model and the IRI-ITU-R model with the digisonde observation is also made. The comparisons show that the newly constructed global hmF2 model can reproduce reasonably well the observations and perform better than IRI-ITU-R model.  相似文献   
102.
We analyzed the dynamics of global electron content (GEC) for the period 1998–2005 and compared the estimated GEC with variations of the 10.7-cm solar radio emission and with and with GEC values obtained with IRI-2001. We found a strong resemblance between the curves’ shapes for the experimental and modeled GEC: strong semiannual variations are discernible in these series and both curves tend to increase the absolute GEC value during the period of maximum of solar activity. However, there are some significant distinctions, such as absence of 27-day fluctuations in the series of GEC computed by the IRI-2001. On the contrary, observational GEC reflects well dynamics of solar activity: 27-day variations of GEC are very similar to the ones of the index F10.7, but GEC undergoes a lagging of about of 30–60 h as compared to value of the F10.7 index. The relative amplitude of 27-day variations decreases from 8% at the rising and falling solar activity to 2% at the period of its maximum.  相似文献   
103.
Global modeling of M(3000)F2 and hmF2 based on three alternative EOF (empirical orthogonal function) expansion methods is described briefly. Data used for the model construction is the monthly median hourly values of M(3000)F2 from the ionosonde/digisonde stations distributed around the world for the period of 1975–1985 and the hmF2 data of the same period converted from the measured M(3000)F2 based on the strong anti-correlation existing between them. Independent data of a low (1965) and a high (1970) solar activity year are used to validate the three alternative models based on different EOF expansion methods. Comparisons between the modeled results and observed data for both the low (1965) and high (1970) solar activity years showed good agreement for both M(3000)F2 and hmF2 parameters. Statistical analysis on the differences between model values and observed data showed that all the three alternative models (Model A, B and C) based on the different EOF expansion methods have better agreement with the observed data than the models currently used in IRI. All three alternative EOF based models have almost the same accuracy. Discussion on the preference of the three alternative EOF based models is given.  相似文献   
104.
An estimation of the F2 ionospheric region critical frequency (foF2) variations using analysis of round-the-world radio sounding data has been made. Experimental data obtained by the Russian chirp-sounders network have been used. For the first time, using experimental data and numerical simulation, the quantitative dependency between the minimum foF2 magnitudes over round-the-world propagation paths and round-the-world maximum usable frequencies has been obtained.  相似文献   
105.
NeQuick ionospheric electron density model, which has been developed to version 2, produces the full electron density profile in the ionosphere. Each part of the profile is modeled using Epstein layer formalism. Simple empirical relations are used to compute the thicknesses of each layer. In order to validate the B2bot parameter in the NeQuick model during high solar activity, we use the data at Hainan, China (109.1°E, 19.5°N; Geomagnetic coordinates: 178.95°E, 8.1°N), measured with DPS-4, and study the diurnal and seasonal variations of B2bot, ΔB2 (B2best − B2NeQuick 2) and the seasonal median values of B2best/B2NeQuick 2 at that region. The results show that, (1) The differences between B2best and B2NeQuick 2 have diurnal and seasonal variations. (2) The diurnal variations of B2NeQuick 2 are smaller than those of B2best. (3) Generally, except for early morning the experimental values are properly reproduced. (4) Generally, during morning the NeQuick model has an underestimation. The magnitude of underestimation varies with LT and season.  相似文献   
106.
The F layer critical frequency (foF2) as measured by Digisondes in the equatorial and low latitude locations in Brazil is analyzed to investigate the seasonal and solar flux controls of the intensity of the equatorial ionization anomaly (EIA) in the equinoctial month of March. The analysis also included the total electron content (TEC) as measured by a GPS receiver operated at the EIA crest location. The foF2 data set covered a period of large solar flux variation from 1996 to 2003, while the GPS TEC data was for a period in 2002–2003 when the solar flux parameter F10.7 underwent large variations, permitting in both cases an examination of the solar flux effects on these parameters. The seasonal variation pattern in TEC shows a maximum in equinoctial months and a minimum in June solstice, with similar variations for foF2. The solar flux dependence of the TEC is a maximum during equinoxes, especially for post-sunset TEC values at times when the latitudinal distribution is controlled by the equatorial evening plasma fountain processes. Significant variations with local time are found in the degree of solar flux dependence for both the TEC and EIA. The EIA intensity shows large dependence on F10.7 during post-sunset to midnight hours. These results are discussed in comparison with their corresponding IRI representations.  相似文献   
107.
One of the requirements for the SimSAC project was to use existing aircraft to act as benchmarks for comparison with CEASIOM generated models. Within this paper, results are given for one of these examples, the Boeing 747-100. This aircraft was selected because a complete dataset exists in the open domain, which can be used to validate SimSAC generated data. The purpose of this paper is to both give confidence in, and to demonstrate the capabilities of, the CEASIOM environment when used for preliminary aircraft and control system design. CEASIOM is the result of the integration of a set of sophisticated tools by the European Union funded, Framework 6 SimSAC program. The first part of this paper presents a comparison of the aerodynamic results for each of the solvers available within CEASIOM together with data from the 747-100 model published by NASA. The resulting nonlinear model is then trimmed and analysed using the Flight Control System Designer Toolkit (FCSDT) module. In the final section of the paper a state-feedback controller is designed within CEASIOM in order to modify the longitudinal dynamics of the aircraft. The open and closed loop models are subsequently evaluated with selected failed aerodynamic surfaces and for the case of a single failed engine. Through these results, the CEASIOM software suite is shown to be able to generate excellent quality adaptive-fidelity aerodynamic data. This data is contained within a full nonlinear aircraft model to which linear analysis and control system design can be easily applied.  相似文献   
108.
着力讨论了一种学习维护手册所使用的新的查询程序,该程序适合现有以中文为母语的学生或初学者,供他们对机务工作各方面的学习和使用.新的查询程序注重基础,可以使学生深入理解ATA100和维护手册的结构,适合初学者对手册的熟悉和使用.  相似文献   
109.
为了满足随钻测斜仪器在油气井中恶劣环境下的测量要求,本文提出了一种以数字信号控制器(DSC)和FPGA组成的双CPU导航计算机方案。该系统由DSC(dsPIC30F6014A)作为核心处理器完成导航计算和滤波算法;由FPGA完成对IMU(惯性测量单元)数据的采集控制及传输等功能。DSC与FPGA之间通过串口传输,最终导航结果由DSC输出给外部控制设备。该系统很好的满足了随钻测斜仪的性能尺寸要求,试验验证结果表明倾斜角、方位角、和工具面角均达到了预期精度指标。  相似文献   
110.
Through concurrently measurements by Communication/Navigation Outage Forecasting System (C/NOFS), Sanya VHF radar and GPS ionospheric scintillation receiver on 12 March 2010, five plasma bubbles were found and three of them were observed by all those instruments. Two well-developed plumes with strong backscatter echoes were measured by Sanya radar and their corresponding depletions were observed by C/NOFS in Orbit 10317, 10318 and 10319. Broad plasma depletions resulting from merging process were found in orbit of 10318. The occurrence time and geophysical positions of scintillations correlate well with observations implemented by Sanya VHF radar and C/NOFS. Observations from three types of instrument indicate that the spread F irregularities have distinct scale. There were longitudinal differences between Sanya VHF radar and C/NOFS as irregularities measured, and the eastward drift of developed bubbles are responsible for these differences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号