首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   19篇
  国内免费   36篇
航空   132篇
航天技术   4篇
综合类   7篇
航天   1篇
  2023年   4篇
  2022年   12篇
  2021年   8篇
  2020年   3篇
  2019年   9篇
  2018年   3篇
  2017年   15篇
  2016年   17篇
  2015年   3篇
  2014年   4篇
  2013年   4篇
  2012年   5篇
  2011年   2篇
  2010年   4篇
  2009年   4篇
  2008年   7篇
  2007年   7篇
  2006年   3篇
  2005年   5篇
  2004年   3篇
  2003年   5篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   5篇
  1997年   1篇
  1996年   2篇
  1993年   1篇
  1990年   2篇
排序方式: 共有144条查询结果,搜索用时 15 毫秒
141.
《中国航空学报》2022,35(10):354-364
Ti6Al4V is widely applied in the integral cascades of aero engines. As an effective machining method, electrochemical trepanning (ECTr) has unique advantages in processing surface parts made of hard-to-cut materials. In ECTr, the state of the flow field has a significant effect on processing stability and machining quality. To improve the uniformity of the flow field when ECTr is applied to Ti6Al4V, two different flow modes are designed, namely full-profile electrolyte supply (FPES) and edges electrolyte supply (EES). Different from the traditional forward flow mode, the flow directions of the electrolyte in the proposed modes are controlled by inlet channels. Simulations show that the flow field under EES is more uniform than that under FPES. To further enhance the uniformity of the flow field, the structure of EES is optimized by modifying the insulating sleeve. In the optimized configuration, the longitudinal distance between the center of the inlet hole and the center of the blade is 6.0 mm, the lateral distance between the centers of the inlet holes on both sides is 16.5 mm, the length to which the electrolyte enters the machining area is 1.5 mm, and the height of the insulating sleeve is 13.5 mm. A series of ECTr experiments are performed under the two flow modes. Compared with EES, the blade machined by FPES is less accurate and has poorer surface quality, with a surface roughness (Ra) of 3.346 μm. Under the optimized EES, the machining quality is effectively enhanced, with the surface quality improved from Ra = 2.621 μm to Ra = 1.815 μm, thus confirming the efficacy of the proposed methods.  相似文献   
142.
Film cooling holes are widely used in aero-engine turbine blades. These blades feature large numbers of holes with complex angles and require a high level of surface integrity. Electrochemical discharge drilling(ECDD) combines the high efficiency of electrical discharge drilling(EDD) with high quality of electrochemical drilling(ECD). However, due to the existence of a variety of energy for material removal, accurate and timely detection of breakthroughs is fraught with difficulties. An insuffic...  相似文献   
143.
A novel co-rotating electrochemical machining method is proposed for fabricating convex structures on the inner surface of a revolving part. The electrodes motion and material removal method of co-rotating electrochemical machining are different from traditional electrochemical machining. An equivalent kinematic model is established to analyze the novel electrodes motion,since the anode and cathode rotate in the same direction while the cathode simultaneously feeds along the line of centres. Acc...  相似文献   
144.
《中国航空学报》2022,35(8):280-294
Electrolyte jet machining (EJM) is a promising method for shaping titanium alloys due to its lack of tool wear, thermal and residual stress, and cracks and burrs. Recently, macro-EJM has attracted increasing attention for its high efficiency in machining wide grooves or planes. However, macro-EJM generates large amounts of electrolytic products, thereby increasing the difficulty of rapid product removal with a standard tool and reducing the surface quality. Therefore, for enhanced product transport, a novel tool with a back inclined end face was proposed for macro-EJM of TC4 titanium alloy. For comparison, also proposed were ones with a standard flat end face, a front inclined end face, and both front and back inclined end faces. The flow field distributions of all proposed tools were simulated numerically, and experiments were also conducted to validate the simulation results. The results show that one with a 5° back inclined end face can decrease the low-velocity flow zone in the machining area and increase the high-velocity flow zone at the back end of tool, thereby promoting rapid product removal. A relatively smooth bright-white groove surface was obtained. The same tool also resulted in the highest machining depth and material removal rate among the tested ones. In addition, rapid product removal was beneficial to the subsequent processing. Because of its rapid product removal, the machining depth and material removal rate during deep groove machining using the tool with a 5° back inclined end face were respectively 7% and 14% higher than those produced using a standard one. Moreover, the lowest bottom height difference of 0.027 mm can be obtained when the step-over value was 8.2 mm, and a plane with a depth of 0.285 mm and a bottom height difference of 0.03 mm was fabricated using the tool with a 5° back inclined end face.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号