首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   672篇
  免费   111篇
  国内免费   205篇
航空   672篇
航天技术   108篇
综合类   112篇
航天   96篇
  2024年   4篇
  2023年   19篇
  2022年   31篇
  2021年   45篇
  2020年   33篇
  2019年   34篇
  2018年   28篇
  2017年   43篇
  2016年   67篇
  2015年   27篇
  2014年   68篇
  2013年   33篇
  2012年   47篇
  2011年   37篇
  2010年   35篇
  2009年   41篇
  2008年   41篇
  2007年   53篇
  2006年   53篇
  2005年   45篇
  2004年   29篇
  2003年   24篇
  2002年   29篇
  2001年   19篇
  2000年   21篇
  1999年   9篇
  1998年   27篇
  1997年   8篇
  1996年   6篇
  1995年   6篇
  1994年   3篇
  1993年   7篇
  1991年   5篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1984年   4篇
排序方式: 共有988条查询结果,搜索用时 15 毫秒
871.
通过双目视觉平台捕获图像反馈PC机,采用基于支持向量机(SVM)的机器学习方法对目标进行分类。判定型号并为每个型号加载图像处理检测方案及参数矩阵,实现电连接器针脚的柔性定位预处理,之后执行针顶轮廓的精确拟合算法,结合插针排列模版实现其三项检测工作。最后,通过实例验证与重复精度实验,结果表明本文方法具备面向多型号的柔性检测能力,并且稳定性,精度,效率满足低频连接器的检验要求。  相似文献   
872.
为清楚阐明3D打印技术是否可应用于加工火箭发动机的关键部件——喷嘴,及加工方式会对推进剂的流动雾化产生何种影响,对相同结构的机械加工喷嘴与3D打印喷嘴的喷雾特性进行了冷态试验对比研究。基于背景光成像技术采用高速相机获得瞬态的喷雾图像,以及激光散射技术采用马尔文测量液滴粒径尺寸分布。研究发现:机械加工喷嘴同轴度普遍较差,喷嘴重复性较低,喷雾存在偏斜、分散等喷雾空间分布不均问题;3D打印喷嘴表面粗糙度较高,使得喷嘴流量系数比设计值低3%左右;在喷嘴同轴度较好的前提下,加工方式对雾化锥角及雾化粒径影响较小。  相似文献   
873.
阮明 《洪都科技》2013,(3):11-16
介绍了德刚空军未来任务能力对其训练发展提m的新要求,分析了德刚空军训练机构的编制体制变革,详细阐述了其训练体制新发展,最后对其变革方向进行了总结。  相似文献   
874.
以陀螺接线柱的加工为研究对象,通过分析现有加工中的难点、问题和加工工艺流程,重点研究了车加工问题机理和表面处理后出现空腔问题的机理,分析出接线柱组件合格率偏低的主要原因。并在此基础上,提出优化的加工工艺方法,以此降低陀螺接线柱的缺陷率。  相似文献   
875.
《中国航空学报》2020,33(4):1338-1348
The microstructural evolution mechanism and constitutive behavior of 2297 Al-Li alloy were studied via thermal compression test with the constant strain rates of 0.001–1 s−1 and the deformation temperatures ranging from 623 to 773 K. To verify the predictable ability of diverse constitutive models under different stress states, the hot compression experiments with stress triaxiality varying from −0.33 to 0.46 were conducted. The microstructures of the deformed specimens under diverse deformation conditions are probed to reveal the mechanism of hot deformation behavior. The experimental results indicate that the work-hardening and dynamic softening are competitive during the hot compression process, and the dynamic softening is more obvious under low deformation temperature and high strain rate. The microstructural analysis manifests that the dynamic recovery gets predominant at high deformation temperature to produce fine grains. Meanwhile, the dynamic recrystallization becomes more dominant as the strain rate decreases, which is sensitive to the stress triaxiality. In addition, both the modified Johnson-Cook model and strain-compensated Arrhenius-type function are suitable for describing the flow behavior of 2297 alloy, while the latter reveals a more accurate prediction. However, the predictability of the two kinds of models is worsened with the transformation of stress triaxiality, and the validity of the Arrhenius-type model is restricted by high stress triaxiality.  相似文献   
876.
《中国航空学报》2020,33(12):3447-3459
In the machining of complicated surfaces, the cutters with large length/diameter ratios are used widely and the deformation of the machining system is one of the principal error sources. During the process planning stage, the cutting direction angle, the cutter lead and tilt angles are usually optimized to minimize the force induced error. It may lead to a low machining efficiency for bullnose end mills, as the material removal rates are different largely for different machining angles. In this paper, the influence mechanism of the machining angles on the force induced error is studied based on the models of the instantaneous cutting force when the cutter flute traveling through the cutting contact point and the stiffness of the machining system. In order to evaluate the machining angles, the force induced error/efficiency indicator (FEI) is defined as the division of the force induced error and the equal volume sphere of the removed material. FEI is dimensionless, with the lower FEI, the lower force induced error and the higher machining efficiency. For optimal selection of the machining angles, the critical FEI is calculated with the constraint of force induced error and the desired material removal rate, and the critical FEI separate the set of the machining angles into two subsets. After the feed rate scheduling process, the machining angles in the optimal subset would have higher machining accuracy and efficiency, while the machining angles in the other subset have lower machining accuracy and efficiency. Through the machining experiment of five axis machining and freeform surface machining, the effectiveness and superiority of the proposed FEI method is verified with a bullnose end mill, which can improve the machining efficiency with the constraint of force induced error.  相似文献   
877.
《中国航空学报》2020,33(7):1919-1928
To determine the oxygen concentration variation in ullage that results from dissolved oxygen evolution in an inert aircraft fuel tank, the CFD method with a mass transfer source is applied in the present study. An experimental system is also designed to evaluate the accuracy of the CFD simulations. The dissolved oxygen evolution is simulated under different conditions of fuel load and initial oxygen concentration in ullage of an inert fuel tank with stimulations of heating and pressure decrease. The increase in the oxygen concentration in ullage ranges from 0.82% to 5.92% upon stimulation of heating and from 0.735% to 12.36% upon stimulation of a pressure decrease for an inert ullage in the simulations. The heating accelerates the release of the dissolved oxygen from the fuel by increasing the mass transfer rate in the mass transfer source and decreasing the pressure, thereby accelerating the dissolved oxygen evolution by increasing the concentration difference between the gas and the fuel. The time constant that represents the oxygen evolution rate is independent of the initial oxygen concentration in ullage of an inert tank but depends closely on the fuel load, temperature and pressure. The time constant can be fitted using a polynomial equation relating the fuel load to temperature in the heating stimulation with an accuracy of 4.77%. Upon stimulation of a pressure decrease, the time constant can be expressed in terms of the fuel load and the pressure, with an accuracy of 5.02%.  相似文献   
878.
《中国航空学报》2020,33(10):2782-2793
Superalloys are commonly used in aircraft manufacturing; however, the requirements for high surface quality and machining accuracy make them difficult to machine. In this study, a hybrid electrochemical discharge process using variable-amplitude pulses is proposed to achieve this target. In this method, electrochemical machining (ECM) and electrical discharge machining (EDM) are unified into a single process using a sequence of variable-amplitude pulses such that the machining process realizes both good surface finish and high machining accuracy. Furthermore, the machining mechanism of the hybrid electrochemical discharge process using variable-amplitude pulses is studied. The mechanism is investigated by observations of machining waveforms and machined surface. It is found that, with a high-frequency transformation between high- and low-voltage waveforms within a voltage cycle, the machining mechanism is frequently transformed from EDM to pure ECM. The critical discharge voltage is 40 V. When pulse voltages greater than 40 V are applied, the machining accuracy is good; however, the surface has defects such as numerous discharge craters. High machining accuracy is maintained when high-voltage pulses are replaced by low-voltage pulses to enhance electrochemical dissolution. The results indicate that the proposed hybrid electrochemical discharge process using variable-amplitude pulses can yield high-quality surfaces with high machining accuracy.  相似文献   
879.
Optimization problems are often highly constrained and evolutionary algorithms(EAs)are effective methods to tackle this kind of problems. To further improve search efficiency and convergence rate of EAs, this paper presents an adaptive double chain quantum genetic algorithm(ADCQGA) for solving constrained optimization problems. ADCQGA makes use of doubleindividuals to represent solutions that are classified as feasible and infeasible solutions. Fitness(or evaluation) functions are defined for both types of solutions. Based on the fitness function, three types of step evolution(SE) are defined and utilized for judging evolutionary individuals. An adaptive rotation is proposed and used to facilitate updating individuals in different solutions.To further improve the search capability and convergence rate, ADCQGA utilizes an adaptive evolution process(AEP), adaptive mutation and replacement techniques. ADCQGA was first tested on a widely used benchmark function to illustrate the relationship between initial parameter values and the convergence rate/search capability. Then the proposed ADCQGA is successfully applied to solve other twelve benchmark functions and five well-known constrained engineering design problems. Multi-aircraft cooperative target allocation problem is a typical constrained optimization problem and requires efficient methods to tackle. Finally, ADCQGA is successfully applied to solving the target allocation problem.  相似文献   
880.
介绍了长径比接近80∶1的超细长空心杆(活塞杆)的结构特点和加工难点。从理论联系实际的角度出发,分析了细长空心杆车削过程中容易出现的各种缺陷的产生原因,并提出针对性的措施以及提高生产效率的途径。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号