首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   6篇
  国内免费   5篇
航空   10篇
航天技术   53篇
综合类   4篇
航天   30篇
  2023年   4篇
  2022年   2篇
  2021年   9篇
  2020年   4篇
  2019年   6篇
  2018年   2篇
  2016年   2篇
  2015年   1篇
  2014年   13篇
  2013年   8篇
  2012年   7篇
  2011年   7篇
  2010年   7篇
  2009年   5篇
  2008年   5篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2000年   2篇
  1999年   3篇
  1997年   1篇
  1994年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
排序方式: 共有97条查询结果,搜索用时 0 毫秒
91.
研究了由多颗合成孔径雷达卫星和一颗可见光卫星构成的空间协同探测系统的工作模式.根据太阳同步轨道和冻结轨道的特点,结合近地轨道遥感卫星的应用需求,选择了轨道半长轴、偏心率、倾角、近心点幅角.考虑到卫星偏航控制对覆盖性能的影响,在不动的地心坐标系中推导了卫星观测方向与地表交点的表达式,提出了确定系统中各颗卫星的升交点赤经和过近心点时刻的算法.给出了包含两颗合成孔径雷达卫星与一颗可见光卫星的协同探测系统的星座设计结果,并利用国际公认的卫星软件工具包Satellite ToolKit进行了验证,表明该设计方法是正确的.  相似文献   
92.
The aim of the work is to design a low-thrust transfer from a Low Earth Orbit to a “useful” periodic orbit in the Earth–Moon Circular Restricted Three Body Model (CR3BP). A useful periodic orbit is here intended as one that moves both in the Earth–Moon plane and out of this plane without any requirements of propellant mass. This is achieved by exploiting a particular class of periodic orbits named Backflip orbits, enabled by the CR3BP. The unique characteristics of this class of periodic solutions allow the design of an almost planar transfer from a geocentric orbit and the use of the Backflip intrinsic characteristics to explore the geospace out of the Earth–Moon plane. The main advantage of this approach is that periodic plane changes can be obtained by performing an almost planar transfer. In order to save propellant mass, so as to increase the scientific payload of the mission, a low-powered transfer is considered. This foresees a thrusting phase to gain energy from a departing circular geocentric orbit and a second thrusting phase to match the state of the target Backflip orbit, separated by an intermediate ballistic phase. This results in a combined application of a low-thrust manoeuvre and of a periodical solution in the CR3BP to realize a new class of missions to explore the Earth–Moon neighbourhoods in a quite inexpensive way. In addition, a low-thrust transit between two different Backflip orbits is analyzed and considered as a possible extension of the proposed mission. Thus, also a Backflip-to-Backflip transfer is addressed where a low-powered probe is able to experience periodic excursions above and below the Earth–Moon plane only performing almost planar and very short transfers.  相似文献   
93.
在木星轨道的空间辐射环境中,占主导地位的粒子是能量大于1 MeV(甚至高于100 MeV)的高能电子,这可能会产生卫星内部介质充电效应.在卫星的防辐射设计中,通常需要一定厚度的材料来屏蔽这些电子,使得进入卫星内部的电子通量达到安全的水平.利用所建立的GEANT4-RIC(radiation induced conduc...  相似文献   
94.
Precise Point Positioning(PPP) requires precise products, including high-accuracy satellite orbit and clock parameters. It is impossible to obtain an orbit solution that is sufficiently accurate for PPP services with a regional tracking network; therefore, satellite orbits are usually estimated by a global tracking network with a large number of ground stations. However, it is expensive to build globally distributed stations. Fortunately, BeiDou-3 satellites carry an InterSatellite Link(ISL) pay...  相似文献   
95.
《中国航空学报》2023,36(3):335-356
Distant Retrograde Orbits (DROs) in the Earth-Moon system have great potential to support varieties of missions due to the favorable stability and orbital positions. Thus, the close relative motion on DROs should be analyzed to design formations to assist or extend the DRO missions. However, as the reference DROs are obtained through numerical methods, the close relative motions on DROs are non-analytical, which severely limits the design of relative trajectories. In this paper, a novel approach is proposed to construct the analytical solution of bounded close relative motion on DROs. The linear dynamics of relative motion on DRO is established at first. The preliminary forms of the general solutions are obtained based on the Floquet theory. And the general solutions are classified as different modes depending on their periodic components. A new parameterization is applied to each mode, which allows us to explore the geometries of quasi-periodic modes in detail. In each mode, the solutions are integrated as a uniform expression and their periodic components are expanded as truncated Fourier series. In this way, the analytical bounded relative motion on DRO is obtained. Based on the analytical expression, the characteristics of different modes are comprehensively analyzed. The natural periodic mode is always located on the single side of the target spacecraft on DRO and is appropriate to be the parking orbits of the rendezvous and docking. On the basis of quasi-periodic modes, quasi-elliptical fly-around relative trajectories are designed with the assistance of only two impulses per period. The fly-around formation can support observations to targets on DRO from multiple viewing angles. And the fly-around formation is validated in a more practical ephemeris model.  相似文献   
96.
Examining the properties of quasi-periodic orbits provides insight into the Sun-perturbed environment in cislunar space. In this investigation, quasi-periodic trajectories and their properties are explored in the Sun-Earth-Moon four-body problem. Computation and the stability characteristics of families of invariant tori are detailed. Furthermore, this investigation offers a framework for construction of ballistic lunar transfer trajectories in the four-body problem. The framework leverages manifold trajectories to supply a set of initial conditions for construction of periapsis Poincaré maps. Periapsis maps reduce the dimensionality of the space and illuminate solutions of interest as a basis to produce feasible families of transfers. Through a continuation process, families of ballistic transfers and families of transfers that include powered lunar flybys are constructed. Ultimately, these solutions supply an initial guess for transition to the Sun-Earth-Moon ephemeris model.  相似文献   
97.
In recent years, Chinese Long March(LM) launchers have experienced several launch failures, most of which occurred in their propulsion systems, and this paper studies Autonomous Mission Reconstruction(AMRC) technology to alleviate losses due to these failures. The status of the techniques related to AMRC, including trajectory and mission planning, guidance methods,and fault tolerant technologies, are reviewed, and their features are compared, which reflect the challenges faced by AMRC technology...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号