首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   6篇
  国内免费   5篇
航空   10篇
航天技术   53篇
综合类   4篇
航天   30篇
  2023年   4篇
  2022年   2篇
  2021年   9篇
  2020年   4篇
  2019年   6篇
  2018年   2篇
  2016年   2篇
  2015年   1篇
  2014年   13篇
  2013年   8篇
  2012年   7篇
  2011年   7篇
  2010年   7篇
  2009年   5篇
  2008年   5篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2000年   2篇
  1999年   3篇
  1997年   1篇
  1994年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
排序方式: 共有97条查询结果,搜索用时 31 毫秒
31.
We aim to provide satellite operators and researchers with an efficient means for evaluating and mitigating collision risk during the design process of mega-constellations. We first introduce a novel algorithm for conjunction prediction that relies on large-scale numerical simulations and uses a sequence of filters to greatly reduce its computational expense. We then use this brute-force algorithm to establish baselines of endogenous (intra-constellation), or self-induced, conjunction events for the FCC-reported designs of the OneWeb LEO and SpaceX Starlink mega-constellations. We demonstrate how these deterministic results can be used to validate more computationally efficient, stochastic techniques for close-encounter prediction by adopting a new probabilistic approach from Solar-System dynamics as a simple test case. Finally, we show how our methodology can be applied during the design phase of large constellations by investigating Minimum Space Occupancy (MiSO) orbits, a generalization of classical frozen orbits that holistically account for the perturbed-Keplerian dynamics of the Earth-satellite-Moon-Sun system. The results indicate that the adoption of MiSO orbital configurations of the proposed mega-constellations can significantly reduce the risk of endogenous collisions with nearly indistinguishable adjustments to the nominal orbital elements of the constellation satellites.  相似文献   
32.
The aim of this paper is to quantify the performance of a flat solar sail to perform a double angular momentum reversal maneuver and produce a new class of two-dimensional, non-Keplerian orbits in the ecliptic plane. For a given pair of orbital parameters, the orbital period and the perihelion distance, it is possible to find the minimum solar sail characteristic acceleration required to fulfil a double angular momentum reversal trajectory. This problem is addressed using an optimal formulation and is solved through an indirect approach. The new trajectories are symmetrical with respect to the sun-perihelion line and exhibit a bean-like shape. Two main difficulties must be properly taken into account. On one side the sail is required to perform a rapid reorientation maneuver when it approaches the perihelion. Suitable simulations have shown that such a maneuver is feasible. In the second place the new trajectories require the use of high performance solar sails. For example, assuming an orbital period equal to 5 years, the required solar sail characteristic acceleration is greater than 3.4 mm/s2. Such a value, although beyond the currently available sail performance, is comparable to what is required by the original concept of H-reversal maneuvers introduced by Vulpetti in 1996.  相似文献   
33.
本文对最优空间机动轨道现有的主要研究成果、研究的基本方法及有关结果作了综合评述,并指出有待解决的问题及研究方向。  相似文献   
34.
一种近地回归轨道区域性覆盖星座设计   总被引:1,自引:0,他引:1  
应用近地回归轨道对我国的国土进行区域覆盖星座设计,设计采用倾角为41°、高度为1201.88km的δ星座,通过对几种可能轨道参数的分析对比,对其覆盖性能进行了仿真分析,找到了满足覆盖要求的星座轨道参数。  相似文献   
35.
The attention to the periodic orbit in the Earth-Moon restricted three-body system continues to grow due to its special environment and locations. This research investigates the feasibility of constructing fuel-optimal single and multiple impulse transfers between unstable periodic orbits at L1 and L2 points. Invariant manifolds, which could provide the appropriate initial trajectories for optimization, are analyzed deeply to enable previously unknown orbit options and potentially to reduce mission cost. A global search strategy based on comparing the orbital state of the unstable and stable manifolds, incorporated with low-thrust techniques, is performed to seek a suitable matching point for maneuver application. Then the sequential quadratic programming (SQP) is adopted to further optimize the velocity increment and obtain the single/multiple impulse optimal transfers. The associated constraint gradients are derived to achieve higher accuracy and rapidity of the algorithm. To highlight the effectivity of the transfer scheme, three-dimensional low-energy transfers between different types and spatial regions of performing single and multiple impulses are explored. The total Delta-V required varies between a few meters per second and tens of meters per second, and the related flight time is about several weeks, mainly depending on the energy of periodic orbits and the invariant manifold structure. The results obtained in this paper can provide a useful reference for the selection of escape and capture site along the manifolds, maneuver magnitude and transfer time.  相似文献   
36.
太阳帆绕地球周期轨道研究   总被引:1,自引:0,他引:1  
  地球同步和太阳同步卫星在各个领域有着广泛的应用。静止轨道是一种特殊的地球同步轨道,轨道资源有限。利用化学推进或电推进可以实现轨道高度不同的同步轨道,如悬挂轨道,但需要消耗较多的燃料,工程上无法承受。本文考虑利用太阳帆实现地球同步和太阳同步轨道。太阳光压力在轨道平面内沿拱线方向,选择光压力与平面的夹角使得轨道平面的旋转速率与太阳光同步。研究表明,设计合适的半长轴和偏心率可以使得轨道旋转速率与地球自转速率一致。假设太阳光与赤道平面平行,可以得到准静止轨道,太阳帆将在传统静止轨道的附近运动,星下点的经度将在一个固定值附近振动。实际上太阳光是与黄道面平行,黄道面与赤道面之间存在夹角。考虑黄赤交角的情况下,太阳帆将在一定纬度和经度范围内运动。适合于对某个区域进行长期观测任务。  相似文献   
37.
For special demands, some notable orbit types have been developed by human, including the Molniya orbits, which have a relatively high eccentricity up to about 0.7, and a period of 12 h. Considering that space debris with high area-to-mass ratio (A/M) has been discovered, such objects may also exist in Molniya orbits due to spacecraft and upper stages fragmentation events. However, there are not sufficient studies of the complex dynamical phenomena of such orbits. These studies can enrich the knowledge about the long-term evolution of these orbits, be helpful to propose uncatalogued objects observation and identification, and also set the protected region as well as active debris removal. In this paper, the characteristics of 2:1 resonance of Molniya satellite orbits are studied. A large set of numerical simulations, including all the relevant perturbations, is carried out to further investigate the main characteristics, and special attention is payed to the dynamical evolution of objects with high A/M, particularly affected by the direct solar radiation pressure. The long-term dynamical evolution of orbital elements, as well as the dependency of lifetime on the A/M value, is discussed.  相似文献   
38.
Exploration of the inner planets of the Solar System is vital to significantly enhance the understanding of the formulation of the Earth and other planets. This paper therefore considers the development of novel orbits of Mars, Mercury and Venus to enhance the opportunities for remote sensing of these planets. Continuous acceleration is used to extend the critical inclination of highly elliptical orbits at each planet and is shown to require modest thrust magnitudes. This paper also presents the extension of existing sun-synchronous orbits around Mars. However, unlike Earth and Mars, natural sun-synchronous orbits do not exist at Mercury or Venus. This research therefore also uses continuous acceleration to enable circular and elliptical sun-synchronous orbits, by ensuring that the orbit's nodal precession rate matches the planets mean orbital rate around the Sun, such that the lighting along the ground-track remains approximately constant over the mission duration. This property is useful both in terms of spacecraft design, due to the constant thermal conditions, and for comparison of images. Considerably high thrust levels are however required to enable these orbits, which are prohibitively high for orbits with inclinations around 90°. These orbits therefore require some development in electric propulsion systems before becoming feasible.  相似文献   
39.
Solar sails are a concept of spacecraft propulsion that takes advantage of solar radiation pressure to propel a spacecraft. Although the thrust provided by a solar sail is small it is constant and unlimited. This offers the chance to deal with novel mission concept. In this work we want to discuss the controllability of a spacecraft around a Halo orbit by means of a solar sail. We will describe the natural dynamics for a solar sail around a Halo orbit. By natural dynamics we mean the behaviour of the trajectory of a solar sail when no control on the sail orientation is applied. We will then discuss how a sequence of changes on the sail orientation will affects the sail's trajectory, and we will use this information to derive efficient station keeping strategies. Finally we will check the robustness of these strategies including different sources of errors in our simulations.  相似文献   
40.
基于椭圆型限制性三体模型的借力飞行机理研究   总被引:3,自引:0,他引:3  
针对星际探测中的借力飞行技术,基于椭圆型限制性三体模型,深入研究了借力飞行 自由参数与借力飞行轨道变化之间的关系。在椭圆型限制性三体问题的假设下,通过正向和 逆向积分相结合的方法,重点研究了借力天体轨道偏心率和相位角对借力飞行逃逸和俘获区 域参数变化的影响,同时分析了借力天体轨道偏心率和相位角对借力飞行实现顺行轨道与逆 行轨道转变区域参数变化的影响,并以地月系统引力参数为例,分析了借力天体分别对应不 同轨道偏心率和相位角时,前向和后向飞越情况下,借力飞行对轨道能量和角动量的影响, 总结出了相应的变化规律。这些研究对于借力飞行轨道的设计与应用具有重要的参考意义。
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号