首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   45篇
  国内免费   34篇
航空   183篇
航天技术   3篇
综合类   23篇
航天   4篇
  2022年   10篇
  2021年   18篇
  2020年   19篇
  2019年   14篇
  2018年   8篇
  2017年   12篇
  2016年   11篇
  2015年   8篇
  2014年   8篇
  2013年   8篇
  2012年   17篇
  2011年   15篇
  2010年   11篇
  2009年   6篇
  2008年   4篇
  2007年   4篇
  2006年   5篇
  2005年   1篇
  2004年   2篇
  2003年   6篇
  2002年   3篇
  2001年   1篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1989年   1篇
排序方式: 共有213条查询结果,搜索用时 171 毫秒
101.
周亦成  单鹏  朱德轩 《航空动力学报》2014,29(11):2621-2632
对适用于高度为10~20km的中速、低速多用途飞行器的双级涡轮增压活塞发动机螺旋桨推进系统的特性计算方法进行了研究.引用涡轮发动机的部件法,建立基于各部件特性的代数数学模型,推进系统各部件工作点则由Newton法求解系统联合工作方程组得到.给出了方程组中的活塞发动机功率保持工作条件及增压器与活塞发动机联合工作条件,分析了推进系统功率保持工况和减功率工况的调节规律,及其对涡轮增压器工作线的影响.分析了推进系统总体及各部件的高度-速度特性.研究表明:该特性计算方法收敛快,一个工况点一般迭代5~6次即可;两个燃气旁通阀的调节规律不但可以满足推进系统的设计目标,同时还可对增压器工作点进行有效的优化调节;该特性计算方法可直接推广到更复杂的多级涡轮增压系统中.   相似文献   
102.
螺旋桨/机翼相互干扰的非定常数值模拟   总被引:3,自引:1,他引:2  
针对太阳能无人机分布式螺旋桨滑流问题,采用基于结构/非结构混合网格的CFD方法进行了非定常数值模拟.通过截取翼段消除有限翼展三维效应的影响并简化研究对象,将滑移网格和转捩模型应用于数值模拟;分别研究了螺旋桨位于翼段前方和后方的情况,并与干净螺旋桨和干净翼段进行对比.结果表明:螺旋桨位于翼段前方或后方均使得翼段升力、阻力、低头力矩增加并呈周期性波动,同时螺旋桨位于翼段后方时对翼段的影响较小;而翼段的存在使得螺旋桨的拉力、吸收功率和效率增加并呈周期性波动,流场的非均匀性导致了螺旋桨振动.   相似文献   
103.
一种高空飞艇螺旋桨结构多目标优化设计方法   总被引:1,自引:1,他引:0  
为了远离旋转激振力的影响避免桨叶共振,需要提高桨叶的弯曲频率,这不可避免的会增加质量。为了解决低质量与高频率之间的矛盾,提出了一种螺旋桨两目标优化方法。以桨叶最小质量和最大弯曲频率作为两个优化目标,以复合材料的铺层角度、铺层厚度和铺层区域作为设计变量,以最大应变、桨尖最大位移和桨叶50%、75%和85%剖面处的扭转角作为约束,使用非支配排序遗传算法(NSGA-Ⅱ)对螺旋桨进行优化设计,得到了关于质量和频率的Pareto解集。转速为520 r/min的两叶桨的转频为8.76 Hz,穿越频率为17.33 Hz,根据频率在Pareto解集上选取远离这两个点的方案。通过制造与测试,得到的实物桨叶频率为12.29 Hz,距离两个共振点都较远,有效的避免了桨叶共振。   相似文献   
104.
螺旋桨滑流对简单襟翼吹气控制的影响   总被引:1,自引:1,他引:0  
为探究螺旋桨滑流对无缝简单襟翼吹气控制的影响,设计了集成吹气系统和螺旋桨的高升力翼型模型,开展了简单襟翼吹气控制的测压和粒子图像测速仪(PIV)流场测试试验,在不同拉力系数下,研究了定常吹气和脉冲吹气对模型不同展向截面的控制效果。结果表明:滑流影响下控制效果具有明显的三维效应,在相同吹气动量系数下,滑流强度较大的截面具有较高的吹气控制效率;对于脉冲吹气,滑流强度较小时,基于襟翼弦长的最佳无量纲频率约为0.31;在最佳频率的吹气可在较低动量系数下实现较大的增升量;最佳频率受滑流强度影响明显。研究结果对高效的吹气襟翼设计提供了试验依据,提出了螺旋桨滑流影响下的吹气襟翼设计建议。   相似文献   
105.
对不同前进比下的螺旋桨滑流流场进行了三维数值模拟,并采用诱导系数来量化螺旋桨的滑流效应,结合涡流理论深入分析和研究了单独螺旋桨的滑流流场特性。结果表明:螺旋桨滑流具有加速效应和扭转效应,其分别可用轴向诱导系数和环向诱导系数来量化;滑流的加速效应沿径向呈先增后减的趋势,而扭转效应沿径向递减;滑流的加速效应和扭转效应均随前进比的增加而减弱。螺旋桨的涡系结构主要包括绕桨叶的附着涡、从桨尖和桨根逸出的自由涡、从桨叶尾缘逸出的自由涡系,以及固体壁面附面层处的涡结构。螺旋桨滑流区的流场可由轴向诱导系数、环向平均的环向诱导系数以及涡系结构共同描述。   相似文献   
106.
王科雷  周洲  祝小平  郭佳豪  范中允 《航空学报》2020,41(1):123118-123118
基于分布式电推进飞行器创新性发展理念,以螺旋桨滑流耦合下机翼气动效率最优为目标开展螺旋桨诱导流场重构设计研究。首先,通过构建基于动量源方法的准定常数值模拟技术,建立了螺旋桨桨盘载荷分布与诱导流场特性之间的联系;然后,基于对螺旋桨桨盘气动载荷分布曲线的参数化控制,提出了螺旋桨诱导流场重构优化设计思想及设计方法;最后,通过相关设计结果的对比分析验证了所提出螺旋桨诱导流场重构设计思想及设计方法的有效性和可靠性。结果表明:与等拉力最小诱导损失螺旋桨相比较,基于所提出诱导流场重构设计思想设计得到的螺旋桨最优气动载荷分布耦合下的机翼气动效率得到显著改善,在本文设计状态下,机翼翼段计算升力相对提高10.40%,计算阻力相对降低7.05%,计算升阻比相对增大18.77%。  相似文献   
107.
杨克龙  韩东  石启鹏 《航空动力学报》2020,35(11):2429-2439
为探讨升推力装置对常规复合式直升机的飞行性能影响,建立了一种复合式直升机性能分析模型。以加装机翼和螺旋桨的UH-60A直升机为样例,探讨了机翼和螺旋桨参数、升推力分配对全机性能的影响机理。结果表明:低速时,机翼和螺旋桨效率低,加装机翼和螺旋桨会降低全机升阻比;螺旋桨转速越高或桨叶负扭越大,导致螺旋桨的型阻功率越大,升阻比降低越明显。高速时,机翼和螺旋桨效率增加,螺旋桨承担绝大部分推力、机翼承担大部分升力,并降低旋翼转速,为旋翼卸载,降低了旋翼诱导和型阻功率,显著提升了全机性能;升阻比随升推力分配分别先增加后降低。300 km/h时,100%、90%、85%和80%旋翼转速时,对升推力进行优化分配后,将基准直升机的升阻比分别提升了40%、2133%、270%和306%。  相似文献   
108.
齐江辉  郭健  郑亚雄  董斌  朱成华 《推进技术》2020,41(11):2605-2612
为研究七叶大侧斜螺旋桨尾流场及梢涡特性,本文基于DDES(延迟分离涡方法)建立了螺旋桨空化流场数值预报模型。为验证所建立数值模型的准确性,进行了多套不同尺度网格的不确定性分析,同时将非定常流动中螺旋桨(VP1304)螺旋桨空泡及梢涡特性计算结果与试验结果进行了对比。随后基于该模型对七叶大侧斜螺旋桨的尾流场及梢涡特性进行了数值分析。计算结果表明:结本文所建立数值模型精度较高,可以准确地捕捉到梢涡空泡及梢涡尾流场特性;同时DDES方法相比RANS方法在对复杂湍流流动的捕捉能力更强,更适用于螺旋桨梢涡捕捉;尾流场网格加密对尾流场模拟及准确捕捉梢涡十分重要,但对螺旋桨水动力性能影响不大;尾流区域的轴向速度场可以分为加速流动区和自由流动区,进速系数越小,自由流动区与加速流动区之间的界限向外扩张越明显;E1619桨在重载工况有明显的梢涡空泡产生,而轻载工况空泡面积较小且无梢涡空泡发生;梢涡在向下游发展过程中会发生相互融合,进速系数越大,融合发生的越晚,梢涡强度也越小;七叶大侧斜螺旋桨在尾流区域会产生一个分支涡,分支涡起始于吸力弯曲面下缘,且与梢涡呈一定的夹角,进速系数越大,夹角越小。  相似文献   
109.
顾家柳  洪杰  李上福 《航空学报》1992,13(8):362-369
本文发展了螺桨转子颤振涡动的分析方法,考虑了桨叶的振动变形及桨轴一支承系统的振动特性、以及螺桨转子的不平衡力,并对运动方程借时域积分法求解,从而使分析结果更为准确。模型螺桨转子的分析计算与风洞试验结果吻合良好。  相似文献   
110.
螺旋桨旋转速度对机翼气动力影响的数值模拟   总被引:1,自引:0,他引:1  
为了研究螺旋桨滑流中的旋转速度对机翼气动力的影响,分别采用非定常方法和桨盘理论两种方式对螺旋桨/机翼构型进行模拟。与非定常方法对比,桨盘理论足以模拟螺旋桨滑流对机翼的影响,并能降低计算要求,缩短计算时间。因此,采用桨盘理论研究桨盘扭矩载荷对应的旋转速度增量对机翼气动力的影响。计算结果表明,桨盘旋转速度对机翼升力影响不大,但是对零攻角时的机翼阻力存在特殊的影响。发现了这一影响,并对其原因进行了说明。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号