首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   4篇
航空   18篇
航天技术   205篇
航天   10篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   5篇
  2019年   4篇
  2018年   2篇
  2015年   1篇
  2014年   20篇
  2013年   20篇
  2012年   12篇
  2011年   17篇
  2010年   17篇
  2009年   38篇
  2008年   37篇
  2007年   8篇
  2006年   3篇
  2005年   5篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2000年   1篇
  1999年   1篇
  1998年   5篇
  1996年   2篇
  1995年   5篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1984年   7篇
排序方式: 共有233条查询结果,搜索用时 437 毫秒
41.
We implemented a 2D Monte Carlo model to simulate the solar modulation of galactic cosmic rays. The model is based on the Parker’s transport equation which contains diffusion, convection, particle drift and energy loss. Following the evolution in time of the solar activity, we are able to modulate a local interstellar spectrum (LIS), that we assumed isotropic beyond the termination shock, down to the Earth position inside the heliosphere. In this work we focused our attention to the cosmic ray positron fraction at energy below ∼10 GeV, showing how the particle drift processes could explain different results for AMS-01 and PAMELA. We compare our modulated spectra with observations at Earth, and then make a prediction of the cosmic ray positron fraction for the AMS-02 experiment.  相似文献   
42.
Observations made with the two Voyager spacecraft confirmed that the solar wind decelerates to form the heliospheric termination shock and that it has begun its merger with the local interstellar medium. The compression ratio of this shock affects galactic cosmic rays when they enter the heliosphere. Hydrodynamic (HD) models show that the compression ratio can have a significant latitude dependence; with the largest value in the nose direction of the heliosphere, becoming significantly less towards the polar regions. The modulation effects of such large latitude dependence are studied, using a well-established numerical drift and shock modulation model. We focus on computing the modulated spectra for galactic protons with emphasis on the radial and polar gradients in the equatorial plane and at a polar angle of θ = 55°, corresponding to the heliolatitude of Voyager 1. Two sets of solutions are computed and compared each time; with and without a latitude dependence for the compression ratio. All computations are done for the two magnetic field polarity cycles assuming solar minimum conditions. Including the termination shock in the model allows the study of the re-acceleration of galactic protons in the outer heliosphere. We find that for the A < 0 polarity cycle the intensity between ∼200 MeV and ∼1 GeV in the vicinity of the shock in the heliospheric equatorial plane may exceed the local interstellar value specified at the heliopause. Unfortunately, at θ = 55°, the effect is reduced. This seems not possible during an A > 0 cycle because significant modulation is then predicted between the heliopause and the termination shock, depending on how strong global gradient and curvature drifts are in the heliosheath. The overall effect of the shock on galactic protons in the equatorial plane is to reduce the total modulation as a function of radial distance with respect to the interstellar spectrum. Making the compression ratio latitude dependent enhances these effects at energies E < 200 MeV in the equatorial plane. At larger heliolatitudes these effects are even more significant. The differences in the modulation between the two drift cycles are compelling when the compression ratio is made latitude dependent but at Earth this effect is insignificant. A general result is that the computed radial gradient changes for galactic protons at and close to the TS and that these changes are polarity dependent. In line with previous work, large polarity dependent effects are predicted for the inner heliosphere and also close to the shock’s position in the equatorial plane. In contrast, at θ = 55°, the largest polarity effect occurs in the middle heliosphere (50 AU), enhanced by the latitude dependence of the compression ratio. At this latitude, the amount of proton modulation between the heliopause and the termination shock is much reduced. If galactic cosmic rays were to experience some diffusive shock acceleration over the 100–1000 MeV range at the shock, the radial gradient should change its sign in the vicinity of the shock, how large, depends on the compression ratio and the amount of drifts taking place in the outer heliosphere. The effective polar gradient shows a strong polarity dependence at Earth but this dissipates at θ = 55°, especially with increasing radial distance. This tendency is enhanced by making the compression ratio latitude dependent.  相似文献   
43.
Long-term changes of the Arctic frontal zone characteristics near the south-eastern coasts of Greenland were considered, the NCEP/NCAR reanalysis data being used. It was found that in the cold half of the year the temperature gradients in the layer 1000–500 hPa in the region under study reveal strong ∼10-yr and ∼22-yr periodicities that seem to be related to solar activity cycles. The results obtained suggest the influence of solar activity and cosmic ray variations on the structure of the temperature field of the troposphere resulting in the changes of the temperature contrasts in the Arctic frontal zone that, in turn, may affect the intensity of cyclogenesis at middle latitudes. The detected effects seem to indicate an important part of frontal zones in the mechanism of solar activity and cosmic ray variation influence on the development of extratropical baric systems. It is suggested that the variations of the temperature gradients revealed in the Arctic frontal zone are due to the radiative forcing of cloudiness changes which may be associated with geomagnetic activity and cosmic ray variations.  相似文献   
44.
无线应急通信作为综合应急保障体系的重要组成部分,在应对洪水、地震、海啸等自然灾害时有着传统网络无可比拟的便捷性和经济型.中继节点作为无线中继网络的关键环节,其选址将直接影响整个应急通信网络的性能.复杂环境无线应急通信中继节点选址依靠现场实地调查和测量,但会存在选址速度慢、中继节点冗余和通信链路质量差等问题.针对以往这些...  相似文献   
45.
A very strong interplanetary and magnetospheric disturbance observed on 7–13 November 2004 can be regarded as one of the strongest events during the entire period of space observations. In this paper we report on the studies of cosmic ray cutoff rigidity variations during 7–13 November 2004 showing how storm conditions can affect the direct cosmic ray access to the inner magnetosphere. Effective cutoff rigidities have been calculated for selected points on the ground by tracing trajectories of cosmic ray particles through the magnetospheric magnetic field of the “storm-oriented” Tsyganenko 2003 model. Cutoff rigidity variations have also been determined by the spectrographic global survey method on the basis of experimental data of the neutron monitor network. Relations between the calculated and experimental cutoff rigidities and the geomagnetic Dst-index and interplanetary parameters have been investigated. Correlation coefficients between the cutoff rigidities obtained by the trajectory tracing method and the spectrographic global survey method have been found to be in the limits 0.76–0.89 for all stations except the low-latitude station Tokyo (0.35). The most pronounced correlation has been revealed between the cutoff rigidities that exhibited a very large variation of ∼1–1.5 GV during the magnetic storm and the Dst index.  相似文献   
46.
Biochips might be suited for planetary exploration. Indeed, they present great potential for the search for biomarkers – molecules that are the sign of past or present life in space – thanks to their size (miniaturized devices) and sensitivity. Their detection principle is based on the recognition of a target molecule by affinity receptors fixed on a solid surface. Consequently, one of the main concerns when developing such a system is the behavior of the biological receptors in a space environment. In this paper, we describe the preparation of an experiment planned to be part of the EXPOSE-R2 mission, which will be conducted on the EXPOSE-R facility, outside the International Space Station (ISS), in order to study the resistance of biochip models to space constraints (especially cosmic radiation and thermal cycling). This experiment overcomes the limits of ground tests which do not reproduce exactly the space parameters. Indeed, contrary to ground experiments where constraints are applied individually and in a limited time, the biochip models on the ISS will be exposed to cumulated constraints during several months. Finally, this ISS experiment is a necessary step towards planetary exploration as it will help assessing whether a biochip can be used for future exploration missions.  相似文献   
47.
Several recent results important for production of ion pairs in the Earth atmosphere by various primary cosmic ray nuclei are presented. The direct ionization by various primary cosmic ray nuclei is explicitly obtained. The longitudinal profile of atmospheric cascades is sensitive to the energy and mass (charge) of the primary particle. In this study different cosmic ray nuclei are considered as primaries, namely Helium, Oxygen and Iron nuclei. The cosmic ray induced ionization is obtained on the basis of CORSIKA 6.52 code simulations using FLUKA 2006 and QGSJET II hadronic interaction models. The energy of the primary particles is normalized to GeV per nucleon. In addition, the ionization yield function Y is normalized as ion pair production per nucleon. The obtained ionization yield functions Y for various primaries are compared. The presented results and their application are discussed.  相似文献   
48.
49.
The effects of galactic and solar cosmic rays (CR) in the middle atmosphere are considered in this work. A new analytical approach for CR ionization by protons and nuclei with charge Z in the lower ionosphere and middle atmosphere is developed in this paper. For this purpose the ionization losses (dE/dh) according to the Bohr–Bethe–Bloch formula for the energetic charged particles are approximated in three different energy intervals. More accurate expressions for energy decrease E(h) and electron production rate profiles q(h) are derived. The obtained formulas allow comparatively easy computer programming. The integrand in q(h) gives the possibility for application of adequate numerical methods – such as Romberg method or Gauss quadrature, for the solution of the mathematical problem. On this way the process of interaction of cosmic ray particles with the upper, middle and lower atmosphere will be described much more realistically. Computations for cosmic ray ionization in the middle atmosphere are made. The full CR composition is taken into account: protons, Helium (α-particles), light L, medium M, heavy H and very heavy VH group of nuclei.  相似文献   
50.
PAMELA is a satellite-borne experiment that has been launched on June 15th, 2006. It is designed to make long duration measurements of cosmic radiation over an extended energy range. Specifically, PAMELA is able to measure the cosmic ray antiproton and positron spectra over the largest energy range ever achieved and will search for antinuclei with unprecedented sensitivity. Furthermore, it will measure the light nuclear component of cosmic rays and investigate phenomena connected with solar and earth physics. The apparatus consists of: a time of flight system, a magnetic spectrometer, an electromagnetic imaging calorimeter, a shower tail catcher scintillator, a neutron detector and an anticoincidence system. In this work a study of the PAMELA capabilities to detect electrons is presented. The Jovian magnetosphere is a powerful accelerator of electrons up to several tens of MeV as observed at first by Pioneer 10 spacecraft (1973). The propagation of Jovian electrons to Earth is affected by modulation due to Corotating Interaction Regions (CIR). Their flux at Earth is, moreover, modulated because every 13 months Earth and Jupiter are aligned along the average direction of the Parker spiral of the Interplanetary Magnetic Field.PAMELA will be able to measure the high energy tail of the Jovian electrons in the energy range from 50 up to 130 MeV. Moreover, it will be possible to extract the Jovian component reaccelerated at the solar wind termination shock (above 130 MeV up to 2 GeV) from the galactic flux.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号