全文获取类型
收费全文 | 234篇 |
免费 | 9篇 |
专业分类
航空 | 18篇 |
航天技术 | 213篇 |
航天 | 12篇 |
出版年
2025年 | 1篇 |
2024年 | 2篇 |
2023年 | 4篇 |
2022年 | 2篇 |
2021年 | 3篇 |
2020年 | 6篇 |
2019年 | 5篇 |
2018年 | 3篇 |
2016年 | 1篇 |
2015年 | 1篇 |
2014年 | 20篇 |
2013年 | 21篇 |
2012年 | 12篇 |
2011年 | 17篇 |
2010年 | 17篇 |
2009年 | 38篇 |
2008年 | 37篇 |
2007年 | 8篇 |
2006年 | 3篇 |
2005年 | 5篇 |
2004年 | 3篇 |
2003年 | 2篇 |
2002年 | 3篇 |
2000年 | 1篇 |
1999年 | 1篇 |
1998年 | 5篇 |
1996年 | 2篇 |
1995年 | 5篇 |
1993年 | 3篇 |
1992年 | 2篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1984年 | 7篇 |
排序方式: 共有243条查询结果,搜索用时 0 毫秒
231.
利用小波分析和交叉小波分析方法, 根据太阳黑子数以及Huancayo和Climax两个测站的月均宇宙线数据, 分析了两个测站的月均宇宙线周期变化, 同时利用太阳黑子数R12对Climax站宇宙线流量进行预测研究. 小波分析结果表明, 太阳黑子与宇宙线除存在显著的11年周期外, 太阳活动高年期间还存在1~6个月尺度的周期特性, 在第22太阳周活动高年时还出现了6~8和1~22个月的变化周期; 交叉小波分析结果表明, 在130个月左右的周期上宇宙线与太阳黑子具有显著的负相关性, 并且宇宙线的变化滞后太阳黑子约8个月; 分别采用预测时刻和8个月前的太阳黑子数, 预测相对误差为3.8912%和3.2386%. 本文方法同样适用于估算其他空间天气参量之间的周期和相关性, 提高各种空间天气参量的预测或预报精度. 相似文献
232.
233.
234.
M. Gerontidou N. Katzourakis H. Mavromichalaki V. Yanke E. Eroshenko 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(7):2231-2240
Cosmic ray cut-off rigidity tables and maps over the world concerning the epochs 2010, 2015 and the current one 2020 have been constructed. These maps display the effective cut-off rigidity in every five degrees in latitude and in longitude at the altitude of 20 km above the surface of the international reference ellipsoid. The values of the geomagnetic cut-off rigidity were calculated in every 5° in latitude and in every 15° in longitude applying the well-known method of particle trajectory calculations resulted from the theory of the particle motion in the Earth's magnetic field. The applied software employed the 12th Generation of the International Geomagnetic Reference Field (IGRF 12) and trajectories were calculated at 0.01 GV intervals in order to determine the vertical cut-off rigidity for each location. Beyond the use of the calculated cut-off rigidity values as a basic reference of charged particle access to different geographical locations during quiet and/or more intense geomagnetic periods, these results can be used for a long- term forecasting of the geomagnetic conditions variations. 相似文献
235.
U.W. Langner M.S. Potgieter 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(12):2084-2090
The effects of changing the position of the solar wind termination shock and the position of the heliopause, and therefore the extent of the heliosheath, on the modulation of cosmic ray protons are illustrated. An improved numerical model with diffusive termination shock acceleration, a heliosheath and drifts is used. The modulation is computed in the equatorial plane and at 35 heliolatitude using recently derived diffusion coefficients applicable to a number of cosmic ray species during both magnetic polarity cycles of the Sun. It was found that qualitatively the modulation results for the different heliopause positions are similar although they differ quantitatively, e.g., clearly different radial gradients are predicted for the regions beyond the termination shock compared to inside the shock. The difference between the modulation for the two solar polarity cycles are less significant at a heliolatitude of 35° than in the equatorial plane. We found that moving the termination shock from 90 to 100 AU, with the heliopause fixed at 120 AU, caused only quantitative differences so that the exact position of the TS in the outer heliosphere seems not crucially important to global modulation. Moving the heliopause outwards, to represent the modulation in the tail region of the heliosphere, causes overall decreases in the cosmic ray intensities but not linearly as a function of energy, e.g., at 1 GeV the effect is insignificant. We conclude from this modelling that the modulation of protons in the heliospheric nose and tail regions are qualitatively similar although, clear quantitative and interesting differences occur. 相似文献
236.
E. Eroshenko A. BelovV. Yanke 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
The history of creation and development of the network of cosmic ray stations in USSR-Russia goes back to the difficult years of the Second War (1944–1945). The Russian neutron monitor network continuously operates at the present time, having developed from a mechanical means of registration into a modern electronic system for the collection and processing of data with the results presented in the Internet in real time. Along with the improvement of the equipment and different methods of data processing, strong scientific groups, and even Institutes have grown up at a number of stations. They carry out scientific investigations on the basis of neutron monitor network data and provide the conditions for operative and real time exchange of data. 相似文献
237.
S.E.S. Ferreira K. Scherer M.S. Potgieter 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(2):351-360
Cosmic ray modulation in the outer heliosphere is discussed from a modeling perspective. Emphasis is on the transport and acceleration of these particles at and beyond the solar wind termination shock in the inner heliosheath region and how this changes over a solar cycle. We will show that by using numerical models, and by comparing results to spacecraft observations, much can be learned about the dependence of cosmic ray modulation on solar cycle changes in the solar wind and heliospheric magnetic field. While the first determines the heliospheric geometry and shock structure, the latter results in a time-dependence of the transport coefficients. Depending on energy, both these effects contribute to cosmic ray intensities in the inner heliosheath changing over a solar cycle. 相似文献
238.
S.A. Dyadechkin V.S. Semenov H.K. Biernat T. Penz 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
Cosmic strings are topological defects which were generated at a transition phase of the very early Universe and are probably responsible for large-scale structure forming. However, they may pull through all history and exist in the recent epoch. Thus, they can have influence for the recent Universe interacting with different objects. We consider the cosmic string behavior in the vicinity of a spinning black hole by means of a numerical simulation. Here we present preliminary results of this work via a comparison of cosmic string and magnetic flux tube behavior in the Kerr metric. Such an approach follows from the similarity of the equations which describe these objects. Therefore, many aspects of this behavior may be comparable. 相似文献
239.
Theodosius Dobzhansky, one of the founding fathers of the modern evolutionary synthesis, once famously stated that “nothing makes sense in biology except in the light of evolution”. Here it will be argued that nothing in astrobiology makes sense except in the light of “Cosmic Convergent Evolution” (CCE). This view of life contends that natural selection is a universal force of nature that leads to the emergence of similarly adapted life forms in analogous planetary biospheres. Although SETI historically preceded the rise of astrobiology that we have witnessed in the recent decade, one of its main tenets from the beginning was the convergence of life on a cosmic scale toward intelligent behavior and subsequent communication via technological means. The question of cultural convergence in terms of symbolic exchange, language and scientific capabilities between advanced interstellar civilizations has been the subject of ongoing debate. However, at the core of the search for extraterrestrial intelligence lies in essence a biological problem since even post-biological extraterrestrial intelligences must have had an origin based on self-replicating biopolymers. Thus, SETI assumes a propensity of the Universe towards biogenesis in accordance with CCE, a new evolutionary concept which posits the multiple emergence of life across the Cosmos. Consequently, we have to wonder about the biophilic properties the Universe apparently exhibits, as well as to try to find an encompassing theory that is able to explain this “fine-tuning” in naturalistic terms. The aims of this paper are as follows: 1) to emphasize the importance of convergent evolution in astrobiology and ongoing SETI research; 2) to introduce novel and biology-centered cosmological ideas such as the “Selfish Biocosm Hypothesis” and the “Evo Devo Universe” as valuable arguments in theorizing about the origin and nature of extraterrestrial intelligence and 3) to synthesize these findings within an emerging post-biological paradigm on which future SETI efforts may be founded. 相似文献
240.
M. Casolino P. Picozza On Behalf of the PAMELA collaboration 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(12):2043-2049
PAMELA is a multi-purpose apparatus composed of a series of scintillator counters arranged at the extremities of a permanent magnet spectrometer to provide charge, time-of-flight and rigidity information. Lepton/hadron identification is performed by a silicon–tungsten calorimeter and a Neutron detector placed at the bottom of the device. An Anticounter system is used offline to reject false triggers coming from the satellite. The device was put into orbit on June 15th 2006 in a pressurized container on board the Russian Resurs-DK1 satellite. The satellite is flying along a high inclination (70°), low Earth orbit (350–600 km), allowing to perform measurements in different points and conditions of the geomagnetosphere. PAMELA main goal is a precise measurement of the antimatter ( 80 MeV–190 GeV, e+ 50 MeV–270 GeV) and matter (p 80–700 GeV, e− 50 MeV–400 GeV) component of the galactic cosmic rays. In this paper we focus on the capabilites of observations of heliospheric cosmic rays: trapped and semi-trapped particles in the proton and electron belts, solar particle events, Jovian electrons will be studied in the three years of expected mission. 相似文献