首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6951篇
  免费   1315篇
  国内免费   1502篇
航空   5953篇
航天技术   1245篇
综合类   923篇
航天   1647篇
  2024年   25篇
  2023年   96篇
  2022年   217篇
  2021年   292篇
  2020年   292篇
  2019年   294篇
  2018年   291篇
  2017年   354篇
  2016年   379篇
  2015年   341篇
  2014年   472篇
  2013年   404篇
  2012年   496篇
  2011年   534篇
  2010年   450篇
  2009年   469篇
  2008年   416篇
  2007年   471篇
  2006年   439篇
  2005年   356篇
  2004年   298篇
  2003年   290篇
  2002年   241篇
  2001年   227篇
  2000年   208篇
  1999年   149篇
  1998年   158篇
  1997年   151篇
  1996年   126篇
  1995年   126篇
  1994年   141篇
  1993年   114篇
  1992年   106篇
  1991年   107篇
  1990年   84篇
  1989年   71篇
  1988年   56篇
  1987年   19篇
  1986年   8篇
排序方式: 共有9768条查询结果,搜索用时 937 毫秒
381.
韩景龙  陈全龙  员海玮 《航空学报》2015,36(4):1034-1055
直升机的气动弹性问题与固定翼飞机不同,不仅要考虑单片桨叶,更要将旋翼视为一个整体,考虑其动态入流、尾迹影响以及旋翼与机身之间的相互耦合等。就单片桨叶而言,在结构动力学上,需要考虑离心力场、几何非线性以及桨叶的非线性挥舞-摆振-扭转耦合;在气动力上,需要考虑动态入流以及桨尖处可能的失速效应,本质上属于非线性气动弹性力学范畴。由于旋翼气动力通常是以周期形式通过旋翼轴传给机身,并引起机身振动,而机身运动又通过改变桨叶根部形态反过来影响旋翼的气动弹性特性,这种旋翼/机身耦合问题,也是近年来直升机气动弹性问题研究中的重要方向和热点之一。此外,随着旋翼流场数值分析方法的日趋成熟,采用动态重叠网格或滑移网格方法来实现桨叶运动,并通过动网格技术来实现桨叶的弹性变形,从而实现弹性旋翼流场的数值模拟,目前正呈现出勃勃生机,成为直升机气动弹性研究的又一重要方向和热点。随着各种新构型直升机的相继出现,如倾转旋翼机、前行桨叶概念旋翼(ABC)直升机和复合式直升机等,也带来了新的气动弹性问题。不断发现问题、解决问题,推动本学科持续发展,永远是气动弹性工作者终身奋斗的目标。  相似文献   
382.
崔乃刚  黄盘兴  路菲  黄荣  韦常柱 《航空学报》2015,36(6):1915-1923
针对运载器大气层内的最优轨迹快速规划问题,提出一种将求解最优控制问题的间接法与直接法相结合的混合优化方法。首先,基于最优控制问题的一阶必要条件,将运载器大气层内的三维最优上升问题转化为Hamiltonian两点边值问题;然后,采用直接法中能以较少的节点获得较高求解精度的Gauss伪谱法进行求解,提高算法的求解效率;最后,采用真空解析解初值及密度同伦技术,解决初值猜测与算法收敛困难的问题。仿真结果表明,混合优化算法能够准确、快速地对运载器大气层内的最优上升轨迹问题进行求解,并在计算精度与效率上均优于间接法,可应用于运载器的轨迹在线规划与闭环制导。  相似文献   
383.
旋转机翼悬停气动特性研究   总被引:1,自引:0,他引:1  
鸭式旋转机翼(CRW)是一种先进的高速直升机方案,旋翼同时也是机翼,是其最关键气动部件之一。采用结构分区拼接网格技术进行空间离散,分区建立参考系,通过求解多重参考系下的N-S方程来计算旋翼流场,首先以传统的Caradonna-Tung实验旋翼的亚、跨声速悬停流场分析为例验证该方法的可靠性,进而采用该方法对旋转机翼悬停流场进行了数值计算,旋翼拉力计算值和地面实验值吻合较好,结果分析表明旋转机翼的悬停流场有着不同于传统旋翼的流场特性。  相似文献   
384.
为解决伴随优化应用在多级压气机中出现的优化工况点漂移问题,在前期薄层N-S方程伴随方法基础上,对目标函数——出口熵增不仅施以质量流量、总压比约束,还添加排间界面静压展向分布作为新的约束条件.以某5级压气机为对象,对其中第1级转、静叶分别在首1.5级和全5级压气机环境下进行了优化.结果表明,施加排间界面静压展向分布约束能够显著解决优化工作点漂移问题,优化后5级压气机的效率提高0.4个百分点.   相似文献   
385.
根据空气/煤油富油燃烧的特点,提出了两种空气/煤油燃气发生器富油燃烧组织方案,设计了采用钝体稳定火焰和旋流空气、二次喷注空气稳定火焰的两种燃气发生器.为了对比两种方案的点火和燃烧特性,对两种燃气发生器进行了一系列热试,结果表明余氧系数是燃气发生器最重要的工况参数.随着余氧系数的增加,燃气发生器的状态逐渐从启动失败变为中途熄火,最终呈正常启动状态.采用钝体稳定火焰的燃气发生器稳定工作的余氧系数边界为0.518,采用旋流空气和二次喷注空气稳定火焰可将该边界延伸到0.237,极大地扩大了燃气发生器的工作范围.与钝体稳定火焰的燃气发生器相比,旋流空气和二次喷注空气稳定火焰的燃气发生器的富油燃烧的燃烧效率提高了20%.两种方案结构复杂性相当,旋流空气和二次喷注空气稳定火焰的燃气发生器不需要冷却火焰稳定器,可提高燃气发生器的工作时间.   相似文献   
386.
基于响应面法的短距/垂直起降飞机近地面升力损失   总被引:1,自引:0,他引:1  
建立了短距/垂直起降(S/VTOL)飞机近地面升力损失的流场计算模型.通过数值模拟得出特定升力布局的飞机近地面状态各工况的升力损失.采用响应面法获得了飞机升力损失关于喷管落压比(NPR)、来流速度及飞机高度的2阶响应曲面函数及显著影响飞机升力损失的关键因素.并分析了喷管落压比、来流速度及飞机高度对飞机升力损失的交互影响作用,优化得出给定工况范围内升力损失最小的工作点.研究表明:仅考虑单因素影响时,升力损失随高度、落压比的增大而减小,随来流速度的增大而增大;考虑两因素交互作用时,高度与落压比及来流速度与落压比对升力损失存在交互影响,而高度与来流速度对升力损失无交互影响;优化获得的升力损失最小的工作点是飞机距地面高度为9D(D为喷管直径)、喷飞机高度为3、来流速度为0m/s,此时的升力损失为1.3%.   相似文献   
387.
以国产实际使用并含有添加剂的RP-3号燃油为研究对象,测量了燃油在不同温度下的密度,搭建了压力降落法实验装置,测定了5~40℃温度及3组不同压力范围下,CO2在RP-3号燃油中的溶解度,采用ASTM D2780-92标准中提供的相对密度法对溶解度进行了计算并与实验值进行了比较.结果显示:计算值与实验值有很大偏差,且随着温度上升及压力下降,该偏差增加,最大相对偏差可达到106%.根据实验值,对ASTM D2780-92中的阿斯特瓦尔德系数计算公式进行了线性修正,修正后计算的溶解度和实验值误差在10%之内.该研究结果可为绿色惰化的设计提供参考依据.   相似文献   
388.
为了更好地对压气机流动进行模拟,在课题组自行开发的结构化有限体积解算器上实现了用于压气机流场计算的混合平面法、谐波平衡法及相滞后法.以NASA Stage 35为例,对3种方法的计算结果进行了比较分析.结果表明:相滞后法的计算精度最高,混合平面法的计算精度最低;相滞后法与半环的双时间推进法结果相近,计算速度提高了20倍;相比混合平面法,谐波平衡法能准确地模拟动静叶间的非定常干涉及进出口参数变化;在谐波阶数达到5阶后,谐波平衡法计算得到的结果不随阶数变化,且与相滞后法的结果基本吻合;混合平面法的计算效率远高于另外两种方法,相滞后法与谐波平衡法在谐波阶数为5阶时的计算效率相当.   相似文献   
389.
针对目前非对称喷管的设计方法上的缺陷,给出了通过指定壁面压力分布规律来反设计其膨胀面型线的方法,获得了膨胀面型线反设计程序,并结合优化算法寻找综合性能较好的喷管壁面压力分布.将采用该方法设计得到的喷管模型与最大推力喷管进行了对比研究.结果表明:在设计点,该喷管的推力系数比最大推力喷管只降低0.102%,而升力和俯仰力矩分别提升2.295%和15.774%.验证了设计思想的正确性,为非对称喷管的设计提供了一种高效的设计方法.   相似文献   
390.
液体火箭发动机充液导管流固耦合动力学特性   总被引:1,自引:0,他引:1  
为了深入研究流固耦合(FSI)作用对液体火箭发动机充液导管频率特性的影响,采用传递矩阵法(TMM)建立了空间导管流固耦合动力学计算模型.针对真实发动机导管开展了传递矩阵模型与传统基于附加质量的有限元(FEM)(非耦合)模型仿真计算以及模态试验验证,比较了管径、壁厚等结构参数对导管流固耦合作用的影响.结果表明:在流固耦合作用下,导管各阶谐振频率减小、而对应的流体振荡与结构振动幅值增大.管径对导管低阶频率特性的影响较壁厚对其影响更大.对于该算例,当管径大于设计值30%后,耦合作用引起的1阶频率误差高于10%,此时流固耦合不能忽略;而壁厚对1阶谐振频率的影响则小于8%.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号