首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   426篇
  免费   97篇
  国内免费   35篇
航空   160篇
航天技术   144篇
综合类   7篇
航天   247篇
  2024年   1篇
  2023年   12篇
  2022年   28篇
  2021年   28篇
  2020年   32篇
  2019年   25篇
  2018年   19篇
  2017年   18篇
  2016年   13篇
  2015年   16篇
  2014年   29篇
  2013年   32篇
  2012年   17篇
  2011年   35篇
  2010年   33篇
  2009年   20篇
  2008年   19篇
  2007年   22篇
  2006年   34篇
  2005年   29篇
  2004年   14篇
  2003年   20篇
  2002年   15篇
  2001年   8篇
  2000年   7篇
  1999年   6篇
  1998年   3篇
  1997年   4篇
  1996年   6篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1987年   1篇
排序方式: 共有558条查询结果,搜索用时 234 毫秒
311.
There are code biases on the pseudo-range observations of the Beidou Navigation Satellite System (BDS) that range in size from several decimeters to larger than one meter. These biases can be divided into two categories, which are the code biases in the pseudo-range observations of Inclined Geo-Synchronous Orbit (IGSO) satellites and Medium Earth Orbit (MEO) satellites and the code biases in the pseudo-range observations of Geosynchronous Earth Orbit (GEO) satellites. In view of the code bias of the IGSO/MEO satellites, the code bias correction model is established using the weighted least square curve fitting method. After the correction, the code biases of the IGSO and MEO satellites are clearly mitigated. A methodology of correcting GEO code bias is proposed based on the empirical mode decomposition (EMD)-wavelet transform (WT) coupled model. The accuracies of the GEO multipath combination of the B1, B2 and B3 frequencies are improved by 39.9%, 17.9%, and 29.4%, respectively. Based on the corrections above, the ten days observations of three Multi-GNSS Experiment (MGEX) stations are processed. The results indicate that the convergence time of the precise point positioning (PPP) can be improved remarkably by applying a code bias. The mean convergence time can be improved by 14.67% after the IGSO/MEO code bias correction. By applying the GEO code bias, the mean convergence time can be further improved by 17.42%.  相似文献   
312.
Satellite autonomous navigation is an important function of the BeiDou-3 navigation System (BDS-3). Satellite autonomous navigation means that the navigation satellite uses long-term forecast ephemeris and Inter-Satellite Link (ISL) measurements to determinate its own spatial position and time reference without the support of the ground Operation and Control System (OCS) for a long time to ensure that the navigation system can normally maintain the time and space reference. This paper aims to analyze the feasibility of distributed autonomous navigation algorithms. For the first time, a ground parallel autonomous navigation test system (GPANTS) is built. The performance of distributed autonomous navigation is then analyzed using the two-way ISL ranging of BDS-3 satellites. First, the BDS simulation platform and the GPANTS are introduced. Then, the basic principles of distributed satellite autonomous orbit determination and time synchronization based on ISL measurements are summarized. Preliminary evaluation of the performance of the BDS-3 constellation autonomous navigation service under ideal conditions through simulation data. Then the performance of autonomous navigation for 22 BeiDou-3 satellites using ISL measurements is evaluated. The results show that when satellites operate autonomously for 50 days without the support of any ground station, the User Range Error (URE) of autonomous orbit determination is better than 3 m, and the time synchronization accuracy is better than 4 ns.  相似文献   
313.
《中国航空学报》2016,(2):424-440
The state estimation strategy using the smooth variable structure filter(SVSF) is based on the variable structure and sliding mode concepts. As presented in its standard form with a fixed boundary layer limit, the value of the boundary layer width is not precisely known at each step and may be selected based on a priori knowledge. The boundary layer width reflects the level of uncertainty in the model parameters and disturbance characteristics, where large values of the boundary layer width lead to robustness without optimality and small values of the boundary layer width provide optimality with poor robustness. As a solution and to overcome these limitations, an adaptive smoothing boundary layer is required to achieve greater robustness and suitable accuracy.This adapted value of the boundary layer width is obtained by minimizing the trace of the a posteriori covariance matrix. In this paper, the proposed new approach will be considered as another alternative to the extended Kalman filters(EKF), nonlinear H1 and standard SVSF-based data fusion techniques for the autonomous airborne navigation and self-localization problem. This alternative is based on strapdown inertial navigation system(SINS) and GPS data using the nonlinear SVSF with a covariance derivation and adaptive boundary layer width.Furthermore, the full mathematical model of the SINS/GPS navigation system considering the unmanned aerial vehicle(UAV) position, velocity and Euler angle as well as gyro and accelerometer biases will be used in this paper to estimate the airborne position and velocity with better accuracy.  相似文献   
314.
Navigation message designing with high accuracy guarantee is the key to efficient navigation message distribution in the global navigation satellite system(GNSS). Developing high accuracy-aware navigation message designing algorithms is an important topic. This paper investigates the high-accuracy navigation message designing problem with the message structure unchanged.The contributions made in this paper include a heuristic that employs the concept of the estimated range deviation(ERD) to improve the existing well-known navigation message on L1 frequency(NAV) of global positioning system(GPS) for good accuracy service; a numerical analysis approximation method(NAAM) to evaluate the range error due to truncation(RET) of different navigation messages; and a basic positioning parameters designing algorithm in the limited space allocation. Based on the predicted ultra-rapid data from the ultra-rapid data from the international GPS service for geodynamic(IGU), ERDs are generated in real time for error correction.Simulations show that the algorithms developed in this paper are general and flexible, and thus are applicable to NAV improvement and other navigation message designs.  相似文献   
315.
Robust adaptive filtering method for SINS/SAR integrated navigation system   总被引:5,自引:0,他引:5  
This paper presents a new robust adaptive filtering method for SINS/SAR (Strap-down Inertial Navigation System/Synthetic Aperture Radar) integrated navigation system. This method adopts the principle of robust estimation to adaptive filtering of observational data. A robust adaptive filter is developed to adaptively determine the covariance matrix of observation noise, and adaptively adjust the covariance matrix of system state noise according to the adaptive factor constructed based on predicted residuals. Experimental results and comparison analysis demonstrate that the proposed method cannot only effectively resist disturbances due to system state noise and observation noise, but it can also achieve higher accuracy than the adaptive Kalman filtering method.  相似文献   
316.
北斗导航系统在物联网中的应用展望   总被引:2,自引:0,他引:2  
物联网是信息技术领域又一个重要发展,它使传统网络从人与人的联系扩展到物与物、物与人的联系。北斗导航系统是我国正在建设的全球卫星导航系统。分析北斗导航系统在物联网中应用的可行性,从物联网的组成结构出发,分析北斗导航系统相比于传统电信网络的优势,并对北斗导航系统在物联网中的应用模式进行展望。  相似文献   
317.
平滑常数是影响载波相位平滑伪距精度的关键参数,实际数据处理时主要依据经验设定平滑常数。这种主观设定过程缺乏理论依据,无法达到最优平滑效果。针对此问题,以适用于实时GNSS载波相位平滑伪距的经典Hatch递推滤波算法为基础,在连续时间域上分析了载波相位平滑伪距误差的主要构成,给出了总误差估算公式,分析了平滑常数对平滑精度的影响传导机制。进一步,采用令平滑总误差最小为目标的极值法推导给出了最优载波相位平滑常数的计算公式,给出了最优载波相位平滑伪距的完整处理步骤。最优平滑常数算法在数学意义上最优,大幅压缩了伪距测量误差,又不会引入过大的电离层发散误差。通过两个实际算例,证明了算法有效性。  相似文献   
318.
空天飞行器制导控制技术研究进展与展望   总被引:1,自引:0,他引:1  
本文在简要介绍空天飞行器制导控制技术发展情况基础上,针对其典型的任务形态给制导控制技术带来的挑战,分别从动力学建模、轨迹优化与制导、飞行控制与导航等四个方面阐述了制导控制技术中面临的关键技术,并探讨了空天飞行器制导控制技术后续发展方向与思路。  相似文献   
319.
The Arthur Clarke Mars Greenhouse is a unique research facility dedicated to the study of greenhouse engineering and autonomous functionality under extreme operational conditions, in preparation for extraterrestrial biologically-based life support systems. The Arthur Clarke Mars Greenhouse is located at the Haughton Mars Project Research Station on Devon Island in the Canadian High Arctic. The greenhouse has been operational since 2002. Over recent years the greenhouse has served as a controlled environment facility for conducting scientific and operationally relevant plant growth investigations in an extreme environment. Since 2005 the greenhouse has seen the deployment of a refined nutrient control system, an improved imaging system capable of remote assessment of basic plant health parameters, more robust communication and power systems as well as the implementation of a distributed data acquisition system. Though several other Arctic greenhouses exist, the Arthur Clarke Mars Greenhouse is distinct in that the focus is on autonomous operation as opposed to strictly plant production. Remote control and autonomous operational experience has applications both terrestrially in production greenhouses and extraterrestrially where future long duration Moon/Mars missions will utilize biological life support systems to close the air, food and water loops. Minimizing crew time is an important goal for any space-based system. The experience gained through the remote operation of the Arthur Clarke Mars Greenhouse is providing the experience necessary to optimize future plant production systems and minimize crew time requirements. Internal greenhouse environmental data shows that the fall growth season (July–September) provides an average photosynthetic photon flux of 161.09 μmol m−2 s−1 (August) and 76.76 μmol m−2 s−1 (September) with approximately a 24 h photoperiod. The spring growth season provides an average of 327.51 μmol m−2 s−1 (May) and 339.32 μmol m−2 s−1 (June) demonstrating that even at high latitudes adequate light is available for crop growth during 4–5 months of the year. The Canadian Space Agency Development Greenhouse [now operational] serves as a test-bed for evaluating new systems prior to deployment in the Arthur Clarke Mars Greenhouse. This greenhouse is also used as a venue for public outreach relating to biological life support research and its corresponding terrestrial spin-offs.  相似文献   
320.
Low-Earth-Orbit(LEO) formation-flying satellites have been widely applied in many kinds of space geodesy. Precise Relative Orbit Determination(PROD) is an essential prerequisite for the LEO formation-flying satellites to complete their mission in space. The contribution of the BeiDou Navigation Satellite System(BDS) to the accuracy and reliability of PROD of LEO formation-flying satellites based on a Global Positioning System(GPS) is studied using a simulation method. Firstly, when BDS is added to GPS, the mean number of visible satellites increases from9.71 to 21.58. Secondly, the results show that the 3-Dimensional(3 D) accuracy of PROD, based on BDS-only, GPS-only and BDS + GPS, is 0.74 mm, 0.66 mm and 0.52 mm, respectively. When BDS co-works with GPS, the accuracy increases by 29.73%. Geostationary-Earth-Orbit(GEO) satellites and Inclined Geosynchronous-Orbit(IGSO) satellites are only distributed over the Asia-Pacific region; however, they could provide a global improvement to PROD. The difference in PROD results between the Asia-Pacific region and the non-Asia-Pacific region is not apparent. Furthermore, the value of the Ambiguity Dilution Of Precision(ADOP), based on BDS + GPS, decreases by 7.50% and 8.26%, respectively, compared with BDS-only and GPS-only. Finally, if the relative position between satellites is only a few kilometres, the effect of ephemeris errors on PROD could be ignored. However, for a several-hundred-kilometre separation of the LEO satellites, the SingleDifference(SD) ephemeris errors of GEO satellites would be on the order of centimetres. The experimental results show that when IGSO satellites and Medium-Earth-Orbit(MEO) satellites co-work with GEO satellites, the accuracy decreases by 17.02%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号