首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1392篇
  免费   420篇
  国内免费   298篇
航空   1376篇
航天技术   154篇
综合类   257篇
航天   323篇
  2024年   22篇
  2023年   69篇
  2022年   92篇
  2021年   82篇
  2020年   111篇
  2019年   83篇
  2018年   72篇
  2017年   80篇
  2016年   125篇
  2015年   140篇
  2014年   133篇
  2013年   124篇
  2012年   143篇
  2011年   111篇
  2010年   95篇
  2009年   98篇
  2008年   83篇
  2007年   55篇
  2006年   51篇
  2005年   34篇
  2004年   25篇
  2003年   11篇
  2002年   21篇
  2001年   28篇
  2000年   21篇
  1999年   17篇
  1998年   32篇
  1997年   22篇
  1996年   22篇
  1995年   17篇
  1994年   14篇
  1993年   8篇
  1992年   7篇
  1991年   18篇
  1990年   31篇
  1989年   9篇
  1988年   2篇
  1985年   1篇
  1982年   1篇
排序方式: 共有2110条查询结果,搜索用时 31 毫秒
191.
由于暂冲式高速风洞运行时间短暂,普遍采用阶梯变迎角方式进行静态测力试验,其试验信息量难以满足先进飞行器研制的试验需求.为在暂冲式高速风洞中获得更为详尽的气动力信息,在2.4m跨声速风洞中进行了连续变迎角测力试验技术应用研究.主要介绍了该项试验技术的基本特点,给出了J7标模的主要试验结果.结果表明,该项试验技术获得的气动力数据与常规阶梯方式具有很好的一致性,可以满足工程实用的要求.  相似文献   
192.
高超声速飞行器结构热模态试验国外进展   总被引:5,自引:0,他引:5  
高超声速飞行器在巡航/再入阶段受到严酷的气动加热效应,极高的温度及温度梯度,改变飞行器结构热物理参数和力学性能,导致结构弯曲、扭转刚度下降,颤振安全边界降低,影响飞行器结构的可靠性。热环境下的结构模态特性,作为反映气动加热对结构影响的重要参数,在指导、验证此类飞行器的设计中具有重要意义。20世纪中期以来,NASA Langley、Dryden等研究中心分别针对金属和复合材料壁板、X-15翼舵、X-34发动机喷管等结构开展热模态试验方法研究与试验验证,近期Dryden研究中心针对X-37方向舵开展热模态试验的探索研究。系统综述了国外开展的热模态试验方法、试验设施和试验结果,总结热模态试验中的工程问题和研究方向,对于国内热模态试验技术的发展、飞行器结构高温性能评估等均具有重要的指导意义。  相似文献   
193.
内压缩通道几何参数对高超声速进气道性能的影响   总被引:4,自引:1,他引:4  
用N-S方程模拟了一系列不同收缩比、不同波系配置的内压缩通道内流动,研究了内压收缩通道几何参数对进气道性能的影响,发现对于相同的外压段,内压面积收缩比对进气道内压缩通道温升比、压比和起动性能具有较好的相似规律,且随着内压面积收缩比增加,进气道温升比、压比增加,出口流场畸变下降,起动马赫数增大。通过对相同压比下不同内外压缩比的进气道性能的研究,得到了内外压缩比对进气道效率和起动性能的影响规律,发现压缩程度相同时,进气道效率和起动马赫数均随内外压缩比有先增大后减小再增大的规律。  相似文献   
194.
通过理论分析、实验测量和数值模拟,研究高超声速粘性相互作用对实验段自由流静压测量的影响.研究表明:由于粘性相互作用,高焓激波风洞实验段平板静压测量值远高于实际自由流静压.在热化学非平衡流情况下,经典的粘性相互作用参数和经验公式具有局限性.  相似文献   
195.
矩形截面高超声速进气道气动设计及实验验证   总被引:5,自引:0,他引:5  
首先对矩形截面高超声速进气道设计方法进行了研究,给出了设计流程,并据此设计了矩形截面高超声速进气道.接着对其进行了三维数值仿真研究,给出了进气道性能参数随来流马赫数、飞行迎角及飞行高度的变化规律.最后设计了实验模型,并进行了高焓风洞实验验证.数值模拟及高焓风洞实验验证均表明:本文采用的设计方法可达到预期的设计效果,设计的进气道达到了相应的设计要求,本文采用的数值仿真方法可以较为准确地模拟高超声速进气道内的流动,数值模拟结果可信.  相似文献   
196.
气动热环境试验及测量技术研究进展   总被引:3,自引:0,他引:3       下载免费PDF全文
地面风洞试验和飞行试验是研究高超声速飞行器气动加热的主要手段。针对临近空间复杂气动外形高超声速飞行器气动热环境研究的需要,分析探讨了国内气动热试验及测量技术的发展情况。分析了临近空间高超声速飞行器外形特征以及飞行剖面、边界层转捩和气动热环境特性等,进而分析了气动热环境风洞试验模拟理论,介绍了适用于气动热研究的风洞试验设备及其模拟能力,重点讨论了适用于不同类型风洞的热流测量技术发展近况、存在的问题和发展趋势;在以长时间、高热流、高壁温为主要特征的高超声速飞行试验中,无法应用风洞环境下的热流测量技术,因而介绍了目前飞行试验中采用的气动热测量技术,讨论了根据结构温度反辨识表面热流存在的问题,以及热流传感器表面的"冷点效应"、表面催化特性等因素对飞行试验气动热测量的影响,提出了后续工作中应重点研究和解决的临近空间飞行器气动热环境测量技术问题。  相似文献   
197.
高超声速进气道在起动过程中存在迟滞现象,起动迟滞对发动机的工作范围有重要影响。以一种Bump/前体一体化进气道为研究对象,通过试验和数值仿真结合的方法,研究迎角变化引起的进气道起动迟滞现象。试验在国防科技大学LF-220自由射流风洞中进行,来流条件Ma=5.0,采用蓄热式加热器对上游气流进行加热,稳定段总压1.59MPa,试验段静温91.67K。试验模型由底座、进气道前体前锥、进气道前体后锥和唇罩4部分组成,模型总长度285mm。采用PSI压力传感器对模型壁面压力进行测量,采样频率为100Hz。试验成功捕捉到进气道随迎角变化由不起动转化为起动的动态过程。研究表明,高超声速进气道随迎角变化存在明显的迟滞现象。试验获得进气道自起动迎角为-1.3°,而进气道自不起动迎角大于10°。在进气道自起动/自不起动过程的研究中发现,随着进气道流动状态的不同,迎角和大尺度分离区交替主导流量变化。  相似文献   
198.
一种非介入式高超声速边界层不稳定波的测量方法   总被引:1,自引:2,他引:1       下载免费PDF全文
地面风洞实验是开展高超声速边界层转捩研究的主要手段之一,但是目前可用于高超声速边界层三维空间测量的实验技术仍极为缺乏,且已有测量技术的动态响应频率普遍较低。基于光的折射和干涉原理,搭建了一套非介入式聚焦激光差分干涉仪测量系统(Focused Laser Differential Interferometry,FLDI),可有效获取三维流场空间点的密度变化。在马赫数为8的常规高超声速风洞中,使用FLDI开展了来流雷诺数107/m、7°半锥角尖锥标模边界层的不稳定波测量实验。结果显示FLDI成功捕获到频率在327 kHz的第二模态不稳定波及其谐波(645 kHz)。通过与PCB测试结果进行对比,FLDI的高信噪比、高解析频率(本文实验有效解析频率1.5 MHz)、高空间分辨率(沿流向小于1 mm)等优点得以体现。鉴于FLDI的高时空分辨率等优良特性,其可用于高超声速边界层不稳定波行为以及感受性等问题的研究,为深入认识高超声速边界层转捩机制以及感受性问题提供了有效手段。  相似文献   
199.
为了推动高超声速边界层转捩研究的深入开展,给边界层转捩机理研究、物理模型验证、转捩数据库构建和转捩天地相关性的建立等提供基础风洞实验数据,在中国空气动力研究与发展中心的Φ1 m高超声速风洞开展了边界层转捩规律红外热图实验。针对半锥角7°尖锥模型,研究了不同单位雷诺数、迎角和马赫数对尖锥边界层转捩位置的影响规律。实验单位雷诺数(0.49~2.45)×107/m,迎角范围-10°~10°,马赫数5~7,模型头部半径0.05 mm。通过红外热图技术测量模型表面温度分布,获得了较为详细的转捩位置和转捩参数影响规律。实验结果表明:在马赫数5~7范围内,马赫数增大,尖锥转捩位置提前,分析认为是高马赫数时的雷诺数较大、自由流噪声水平较高引起;随着单位雷诺数的增大,边界层转捩位置前移,转捩雷诺数保持不变,约为3.0×106;小迎角时,随着迎角的增大,迎风面边界层转捩推迟,背风面边界层转捩前移,在10°大迎角时,迎风区中心线转捩前移,出现迎角"转捩逆转"现象,背风区出现了流动分离导致的低热流条带。  相似文献   
200.
基于马赫数分布规律可控的轴对称基准流场,使用流线追踪和截面渐变方法设计了进口截面形状非对称的类水滴形进口转圆形出口高超内收缩进气道,研究了设计参数横向位置d,纵向位置h和进口形状曲线参数a对性能的影响规律。在相同约束条件下对比了类水滴形进口进气道与常规矩形转圆、方形转圆进气道的性能差异。结果表明:在设计点,所研究的设计参数对类水滴进口进气道总体性能影响显著;在捕获面积和内收缩比相同的情况下,类水滴进口进气道综合性能明显优于常规矩形转圆、方形转圆进气道。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号