首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2289篇
  免费   480篇
  国内免费   209篇
航空   2160篇
航天技术   171篇
综合类   280篇
航天   367篇
  2024年   29篇
  2023年   84篇
  2022年   88篇
  2021年   130篇
  2020年   114篇
  2019年   117篇
  2018年   68篇
  2017年   90篇
  2016年   100篇
  2015年   77篇
  2014年   99篇
  2013年   95篇
  2012年   148篇
  2011年   136篇
  2010年   110篇
  2009年   77篇
  2008年   117篇
  2007年   143篇
  2006年   84篇
  2005年   102篇
  2004年   68篇
  2003年   89篇
  2002年   73篇
  2001年   84篇
  2000年   66篇
  1999年   47篇
  1998年   60篇
  1997年   90篇
  1996年   64篇
  1995年   59篇
  1994年   53篇
  1993年   31篇
  1992年   38篇
  1991年   35篇
  1990年   34篇
  1989年   45篇
  1988年   9篇
  1987年   13篇
  1986年   5篇
  1985年   4篇
  1984年   1篇
  1982年   2篇
排序方式: 共有2978条查询结果,搜索用时 328 毫秒
971.
为研究某型大扩张角涡轮过渡段气动性能,对过渡段内部流场进行了详细的试验测量,同时采用CFD数值模拟对过渡段内部流场进行仿真,并与试验结果进行对比分析.结果表明:过渡段机匣表面流动受强逆压梯度影响,容易发生流动分离;轮毂表面流场受支板前缘冲击绕流的影响,呈现周向不均匀性.来流气流角使得过渡段内部流场向支板一侧偏斜,随着气流角的增大,过渡段总压损失增大.CFD模拟结果与试验测量结果吻合较好,均能很好地捕捉流场的细节特征;过渡段进、出口总压恢复系数随着来流气流角的增大而减小,CFD模拟和试验测量值的偏差约为0.2%.  相似文献   
972.
传统高温板壳结构的热屈曲分析方法,在解决热-机械载荷耦合作用下复杂板壳结构的屈曲问题时存在较大的局限性,合理的局部热屈曲理论分析方法有助于提高板壳热结构设计水平。因此,根据高温板壳的结构特征和力学特征,在"机械载荷等效成局部边界压应力效应"假设前提下,提出了四种典型的应力等效的局部热屈曲模型,基于初始后屈曲渐近分析理论,建立了一套有效的局部热屈曲理论分析方法。采用上述方法,研究了完善和具有初始缺陷板壳的弹性热后屈曲性态,具体分析了带预载的四边简支模型,带预载的四边固支模型,带预载的三边简支、一边自由模型以及带预载的三边固支、一边自由模型,给出了板壳长度尺寸、厚度等参数对热屈曲载荷的影响规律,并将其推广到高阶热屈曲问题中。分析结果表明:板体现为分叉式屈曲,壳体现为跳跃式屈曲;在长宽比一定的情况下,长度越长,屈曲临界载荷越小,厚度越厚,屈曲临界载荷越高。  相似文献   
973.
高超声速飞行器高温流场数值模拟面临的问题   总被引:2,自引:0,他引:2  
随着高超声速飞行器目标光辐射和电磁散射特性研究的发展和深入,高温流场特性日益引起人们的关注。由于高温流场特性研究中涉及到非常多的复杂气动现象,如气动加热、烧蚀、辐射、燃烧、化学反应以及湍流等,因此其数值模拟面临着诸多挑战。这里基于连续流计算流体力学(CFD)技术和稀薄气体蒙特卡罗直接仿真(DSMC)方法,从化学物理模型建模、方法稳定性与数值求解效率出发,分析了高超声速飞行器外部绕流、尾迹和发动机喷焰三方面的流场特性数值模拟在不同弹道、热防护手段和飞行流域环境下所面临的问题。在此基础上提出了数值求解技术和化学物理模型建模今后需要发展的方向,为有效提高高超声速高温流场特性数值模拟效率、增加流场特性预测精度提供了指导,从而为研究流场对高超声速飞行器目标光辐射和电磁散射特性影响提供有效的基础数据。  相似文献   
974.
孔挤压对于高温合金GH4169孔结构高温疲劳性能的影响   总被引:2,自引:2,他引:2  
根据高压压气机盘螺栓孔结构,设计中心孔板材疲劳试样.表征了孔挤压强化后的表面轮廓,分析了在多种交变载荷条件下孔挤压前后试样的疲劳寿命,并进行了断口观察和疲劳过程中孔挤压残余应力的演化分析.结果表明:孔挤压强化减小了孔壁表面粗糙度,并使孔结构在多种高温大应力条件下(825MPa/600℃、825MPa/400℃和663MPa/600℃)的高温疲劳性能提高1~3倍,但疲劳数据分散度略有增大.孔挤压残余应力在最大拉应力为663MPa,温度为600℃,应力比为01条件下20000次疲劳试验中松弛到60%.原始试样的多源疲劳断口主要起源于孔边的加工刀痕,而挤压强化试样断口起源于孔挤压在倒角区域流动金属堆积处,为单源疲劳断口.   相似文献   
975.
通过宽载荷水平大子样试验研究了缺陷对粉末冶金镍基高温合金FGH96的疲劳寿命分散性的影响,获得FGH96在宽载荷水平下的疲劳寿命分布特征.通过扫描电镜对疲劳失效断口进行统计分析,揭示缺陷在不同载荷条件下的作用.结果表明:①FGH96中导致疲劳失效的缺陷主要为非金属夹杂;②在高应力水平下(1200,1100MPa)下,导致表面萌生裂纹的夹杂是最差疲劳寿命的主导因素,使得疲劳寿命分散性较大;③在中间应力水平(1000MPa)下,在材料内部萌生裂纹的夹杂并不影响疲劳寿命的分散性;④在低应力水平(900MPa)下,疲劳破坏均萌生于内部,在材料内部夹杂处萌生的裂纹并不影响疲劳寿命的分散性.因此,在高应力水平下的寿命预测需要考虑缺陷信息.   相似文献   
976.
针对高温叶片气热多学科优化设计问题中设计变量过多造成的维数灾难问题,提出了基于数据挖掘技术的显著变量识别方法。采用显著变量识别方法剔除了对高温叶片Mark II气热性能影响小的设计变量,使设计变量个数从36个减少为15个。通过耦合共轭换热分析方法、三维叶片及冷却系统参数化方法以及自适应多目标差分进化算法,建立了高温叶片多学科多目标设计优化系统。基于显著变量识别方法获得的设计变量,完成了Mark II型叶片的气热性能多学科设计优化。优化获得了9个Pareto解,典型Pareto解的气热分析结果表明,优化后叶片的气热性能明显优于原始叶片,验证了基于数据挖掘技术的高温叶片多学科设计方法的有效性。  相似文献   
977.
研发了一种FeAlCrBSiNb粉芯丝材,采用高速电弧喷涂技术在45钢基体上制备相应涂层.通过SEM,TEM和XRD表征涂层微观组织和相成分,阐述FeAlCrBSiNb非晶涂层的形成机理,利用显微硬度计,万能拉伸试验机和环-块式摩擦磨损试验机,分析涂层力学性能和摩擦磨损行为.结果表明:涂层主要由非晶相和弥散分布其中的α-(Fe),(Fe,Cr),CrB和Fe3Al微晶纳米晶相组成,非晶相体积含量大于91.3%;涂层呈层状结构,结构致密,总体孔隙率约为2%;平均显微硬度值为850 HV0.1,是基体45钢的4倍;优良的磨损抗力使其相对耐磨性是45钢的5倍,其磨损机制主要为剥落引起的剥落磨损.  相似文献   
978.
采用Gleeble-1500D热模拟试验机进行氩气雾化FGH95合金的热压缩实验,在不同的温度和应变速率下,获得FGH95合金的变形应力应变曲线,根据变形数据,建立FGH95合金的变形本构方程,并基于动态材料模型,绘制合金的热加工图。计算得到氩气雾化FGH95合金的变形激活能Q=695.78 kJ/mol,通过建立的本构方程计算得出的峰值应力与实验值符合较好,平均误差范围约6%;根据热加工图,确定FGH95合金安全的热加工区域如下:1070~1100℃,0.01~0.001 s-1,当温度增加到1100℃以上后,应变速率可以增大到0.5 s-1。  相似文献   
979.
对硬质合金与陶瓷两类不同刀具分别以低速湿式铣削和高速干铣削方式加工镍基高温合金GH4169时的已加工表面残余应力进行研究.采用X射线衍射法测量铣削后的工件表面残余应力.采用涂层硬质合金刀具在较低铣削速度30~90m/min并浇注切削液的条件下铣削GH4169时,可在工件表面形成残余压应力或相对较小的残余拉应力,对残余应力数据进行统计分析.结果表明,刀具和铣削速度对表面残余应力均有显著影响,而且表面残余应力总体上随着每齿进给量的增加而呈现拉应力增加的趋势.采用涂层Al2O3-SiCw和Sialon陶瓷刀具以较高铣削速度300~1100m/min干铣削GH4169时,工件表面都将形成很大的残余拉应力.镍基高温合金GH4169的精加工更适合采用硬质合金涂层刀具并浇注切削液充分冷却,而陶瓷刀具干铣削则更适合于GH4169的粗加工.  相似文献   
980.
Deformation behavior of the Mg-8 wt%Li alloy at high strain rate was studied by means of the Split Hopkinson Pressure Bar (with strain rate of 10^3 s^-1). It is found that shear localization proves to be the main damage mode for the alloy during dynamic loading. Strain and strain rate arc the two necessary parameters affecting the occurrence of deformation and shear bands. Deformation bands begin to form when the strain and strain rate reach 0.20 and 1 900 s^-1 respectively and will develop gradually with the strain rate increasing. Besides, deformation bands will transform into shear bands when the strain and strain rate reach above 0.25 and 3 500 s^-1 separately.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号