首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2206篇
  免费   660篇
  国内免费   186篇
航空   1820篇
航天技术   334篇
综合类   167篇
航天   731篇
  2024年   25篇
  2023年   67篇
  2022年   94篇
  2021年   87篇
  2020年   96篇
  2019年   84篇
  2018年   76篇
  2017年   103篇
  2016年   88篇
  2015年   98篇
  2014年   133篇
  2013年   107篇
  2012年   135篇
  2011年   120篇
  2010年   107篇
  2009年   112篇
  2008年   134篇
  2007年   119篇
  2006年   90篇
  2005年   102篇
  2004年   84篇
  2003年   92篇
  2002年   92篇
  2001年   85篇
  2000年   82篇
  1999年   59篇
  1998年   67篇
  1997年   56篇
  1996年   71篇
  1995年   45篇
  1994年   49篇
  1993年   48篇
  1992年   32篇
  1991年   44篇
  1990年   39篇
  1989年   34篇
  1988年   27篇
  1987年   19篇
  1986年   13篇
  1985年   12篇
  1984年   7篇
  1983年   4篇
  1982年   5篇
  1981年   6篇
  1980年   3篇
排序方式: 共有3052条查询结果,搜索用时 140 毫秒
551.
高气动性能、复杂构型的多维偏转S弯喷管气动型面设计是翼身融合布局隐身飞机的关键技术之一。通过改进Lee曲线方法和多参数耦合法,提出了一种异型喷口的多维偏转S弯喷管设计方法,实现了带矢量角的多维偏转S形中心线设计和圆形进口至异型喷口的截面过渡,可用于常规及空间受限布局下的多维偏转、带矢量角、非对称异型喷口、单/双发布局等多种类型的S弯喷管气动型面设计。基于数值模拟方法和小型涡喷发动机整机实验验证了提出的设计方法,结果表明:基于空间受限布局设计的超紧凑S弯喷管,在临界工况下,流量系数达到0.982,推力系数达到0.989,在超临界工况下,流量系数不小于0.984,推力系数不小于0.992;基于空间受限布局设计的多维偏转S弯喷管,在临界工况下,流量系数达到0.980,推力系数达到0.986,在超临界工况下,流量系数不小于0.981,推力系数不小于0.990;基于双发布局设计的双发S弯喷管,安装发动机后总推力相比原装喷管降低不大于4.58%,具有较好的气动性能。  相似文献   
552.
针对复杂气流扰动对无人机(UAV)航迹高度控制的影响,对存在复杂气流扰动下的定高控制策略、控制结构和控制器参数优化展开研究,实现高精度高度控制。基于线性自抗扰控制(LADRC)确定总体控制架构,设计扩张状态观测器(ESO)观测估计纵向高度通道和速度通道中存在的总扰动,在控制中引入扰动补偿,减小扰动对系统输出造成的影响。对UAV在飞行过程中存在的大气紊流扰动或离散突风等风干扰分析其功率谱密度,构造考虑风扰动对高度影响、时域响应特性和稳定裕度的综合目标函数,通过粒子群优化算法得到具有高精度、高抗干扰性能的控制器参数,优化中考虑风干扰的功率谱密度分布,减小了控制器参数设计的保守性。通过与常规比例-积分-微分(PID)控制器控制效果进行对比,说明基于线性自抗扰控制器的纵向高度控制的优异性能。   相似文献   
553.
通过仿真研究了跨声速飞行状态下(Ma=1.2)一种带间隔式进气门的引射喷管流动特性,获得了二次流对三次流流动状态、喷管流动结构以及推力性能的影响规律。结果表明:带有间隔式辅助进气门的引射喷管内部存在显著的横向流动,诱导产生了多对流向涡结构,沿着流动方向流向涡的尺度逐渐减小。主流始终处于过膨胀状态,主导了引射喷管的内流流动,并和二次流之间形成了一道剪切层结构。随着二次流落压比的升高,二次流和三次流流量增加,其对主流的束缚作用增强,主流过膨胀现象得到有效抑制,推力性能从0.698增加至0.819。  相似文献   
554.
全相位快速傅里叶变换(all phase Fast Fourier Transform,apFFT)相位一致性特点使正弦信号相位估计不受频率估计影响,但由于频谱泄露和栅栏效应,apFFT相位估计性能受信号频率位置影响。针对该问题,提出了一种基于高精度频率估计和补偿的apFFT相位估计方法。首先,对信号进行高精度频率估计,并以此对信号进行频移补偿,然后对补偿信号进行apFFT,最后求解信号相位。蒙特卡洛仿真结果表明:所提算法的相位估计性能不受信号频率位置影响,相位估计误差性能与理论值一致,受两参数克拉美罗界(CRLB2)约束,约为1.158 2倍的CRLB2;相位估计性能和抗噪声能力明显优于经典apFFT算法和其他对比算法。更进一步,利用我国首次火星探测器TW-1(天问一号)近火捕获段干涉测量数据进行算法验证,结果表明:相位估计精度约4 mrad,干涉测量时延估计精度约50 ps。  相似文献   
555.
为了探究不同遮挡偏距比双S弯排气系统的红外特性,试验研究了遮挡偏距比为55%和100%的双S弯二元排气系统的壁面温度分布和红外辐射特性,并与相应的基准轴对称排气系统进行了对比分析。结果表明:S弯喷管壁温整体要比基准轴对称喷管高约25%,第一S弯下游的上壁面附近存在局部高温区,提高S弯喷管遮挡偏距比后,温度梯度加剧,热应力集中。与基准轴对称排气系统相比,55%和100%遮挡偏距比双S弯二元排气系统均具有突出的红外抑制效果,正尾向(α=0°)红外辐射强度分别降低77.7%和79.3%。从温度和红外辐射强度综合评价,遮挡偏距比并非全遮挡最好,遮挡偏距比从55%提高到100%后,仅能有效抑制上方探测面α=5°和10°的红外辐射,而基本不会改变尾向其他探测方向的红外辐射,在工程设计时应权衡优化损失。  相似文献   
556.
介绍了波音787-9无线电系统、无线电高度表系统部件组成与功能,提出了对典型性故障的快速处理方法,对特殊故障进行分析,以提高航线排故效率。  相似文献   
557.
深空激光通信系统下行链路的脉冲位置调制PPM(Pulse Position Modulation)信号在经过大气信道传输和单光子探测器接收时,将出现脉冲展宽效应,引起通信系统性能下降。分析了大气信道中的淡积云云层散射、大气湍流与气溶胶散射和单光子探测器的抖动特性所引起的脉冲展宽效应。在此基础上,仿真分析了淡积云云层物理厚度对不同PPM调制阶数下通信速率的影响,并研究了单光子探测器引起的脉冲展宽产生的抖动损失。为补偿脉冲展宽的影响,提出了一种基于时隙似然比解调的补偿方法,通过仿真验证了该方法能够有效降低深空PPM激光通信链路中脉冲展宽对通信误码率的影响。该研究对分析和提升深空PPM激光通信系统的链路性能具有一定的参考意义。  相似文献   
558.
针对超音速分离线喷管大摆角状态下化学烧蚀导致的壁面退移,基于动网格技术建立了相应的动态仿真模型,实现了对不同燃烧室条件下喷管化学烧蚀率的预示。初步稳态计算得到喉部烧蚀率为0.048 6 mm/s,高出试验结果5.67%,验证了仿真设置的合理性。以此状态结果为瞬态计算的初场,进行相应的化学烧蚀动态仿真计算。该喷管的矢量角放大系数在0.5 s仿真时间内因壁面退移减小了0.42%,对称面下侧分离线结构附近因燃气流动受阻成为喷管烧蚀最严重的位置,烧蚀率为0.074 5 mm/s。增大燃烧室压强或温度,会导致同周向位置的分离线后侧与前侧壁面烧蚀率比值减小。对于分离线附近型面变化较小处,压强5.5 MPa增加到7.5 MPa,该比值减小了10%,温度3200 K增加到3600 K减小了15%。  相似文献   
559.
旋转高频信号注入法注入信号较为稳定,且位置估计过程不依赖电机参数,因而十分适用于内置式永磁同步电机(IPMSM)的零、低速转子位置检测。针对传统高频信号注入法无法辨别磁极的问题,用电压方波注入法检测磁极,结合有限元软件仿真,来合理选取方波电压幅值和时长,有效缩短了磁极判断耗时。分析了滤波器和信号离散化对位置估计精度的影响,提出在低速段可用线段拟合带通滤波器中心频率处的相频特性曲线,推导所需补偿角度与电机转速的关系。在理论分析的基础上,采用基于DSP28335的样机平台进行试验,结果表明磁极判断过程稳定,耗时较短,补偿后的位置估计值相比补偿前有明显改善,调速过程中系统动态性能良好。  相似文献   
560.
随钻振动工作环境下,针对惯导系统传统的线性器件误差模型不能适用于线振动工作环境的问题,提出了适用于振动条件下的高阶器件误差模型。通过分析二次项误差在静止与振动状态下的误差传播特性,得出加速度计二次项误差为线振动中主要误差项,建立包含加速度计二次项误差的36阶Kalman滤波器。与传统33阶误差模型相比,36阶误差模型可以有效分离和辨识器件误差。最后,在线振动状态下进行导航验证。结果表明,补偿了二次项误差之后的导航误差得到了大幅优化,速度误差由50m/s减小至2.2m/s,位置误差由90000m减小至2000m,姿态误差由0.7°减小至0.01°。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号