首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1588篇
  免费   756篇
  国内免费   84篇
航空   2160篇
航天技术   45篇
综合类   107篇
航天   116篇
  2024年   29篇
  2023年   85篇
  2022年   83篇
  2021年   91篇
  2020年   67篇
  2019年   77篇
  2018年   66篇
  2017年   103篇
  2016年   100篇
  2015年   105篇
  2014年   112篇
  2013年   105篇
  2012年   113篇
  2011年   115篇
  2010年   95篇
  2009年   85篇
  2008年   91篇
  2007年   80篇
  2006年   51篇
  2005年   37篇
  2004年   61篇
  2003年   55篇
  2002年   51篇
  2001年   37篇
  2000年   63篇
  1999年   51篇
  1998年   35篇
  1997年   40篇
  1996年   50篇
  1995年   29篇
  1994年   47篇
  1993年   29篇
  1992年   36篇
  1991年   29篇
  1990年   19篇
  1989年   38篇
  1988年   15篇
  1987年   7篇
  1986年   13篇
  1985年   9篇
  1984年   4篇
  1983年   9篇
  1982年   4篇
  1981年   3篇
  1980年   4篇
排序方式: 共有2428条查询结果,搜索用时 959 毫秒
401.
为研究燃油喷雾特性对某小发环形回流燃烧室主燃区燃烧特性的影响,采用数值模拟的方法,对环涡形燃烧室内燃油喷嘴伸入火焰筒的深度和喷雾偏转角度对燃烧室内的三维两相喷雾、燃烧特性进行了研究。结果表明:喷嘴位置和角度的变化,会导致燃油雾化性能的变化,从而引起燃烧特性的变化;随着喷嘴伸入火焰筒的深度变短,会导致高温区变窄且靠近火焰筒外壁,深度变长则会导致主燃区高温区减小且燃烧不充分;喷雾偏转角度顺时针旋转可使燃油在主燃区燃烧得更加充分。  相似文献   
402.
为适应未来航空电气化的发展需求,研究了30kW级航空电驱动涵道风扇设计方法。涵道风扇性能设计基于航空发动机压缩部件设计流程。以推进系统总体性能为设计目标,完成了转子、流道以及短舱的气动外形设计。对各组成部件建立性能分析模型,评估全工况范围特性。涵道风扇结构设计采用风扇-电机一体化设计思想,简化连接方式的同时减少零件数。采用航空发动机结构强度分析方法,对涵道风扇各部件的应力、振动等特性进行评估分析。完成了30kW涵道风扇试制并开展地面和飞行试验研究。按照航空发动机整机试验方法,在整机试验台架完成涵道风扇地面性能试验。通过对比分析,试验结果与设计值误差在5%以内,验证了设计方法的有效性与正确性。涵道风扇配装轻型通航飞机完成了飞行试验,全系统工作正常,进一步验证了实际使用环境下涵道风扇的工作可靠性。  相似文献   
403.
为了揭示两相旋转爆震波在空筒形燃烧室内的建立过程及传播特性,以航空煤油为燃料,富氧空气为氧化剂,在不同氧化剂供给条件下,实验研究了垂直预爆管安装位置(即点火位置)对旋转爆震起爆特性的影响。结果表明,在四个点火位置上(距喷注端面分别为20,40,60和90 mm,相对点火位置分别为0.15,0.30,0.46和0.69)均可触发并实现旋转爆震波的稳定传播,并观察到稳定爆震和不稳定爆震两种模态;旋转爆震波的建立过程均可以分为三个阶段:缓燃燃烧阶段、起爆阶段和稳定旋转爆震阶段。其中,缓燃燃烧阶段耗时最长,占爆震波建立时间的60%~80%,是制约RDE快速启动的关键环节;在相对点火位置为0.46处点火时,稳定爆震模态的建立时间最短且对应的工作范围最宽。  相似文献   
404.
王煜栋  王方  甘甜  金捷 《推进技术》2023,(5):125-137
航空发动机折流燃烧室几何结构复杂,其高保真数值模拟需要高效的网格与边界条件处理方法。采用曲线坐标系隐式浸没边界方法结合大涡模拟-概率密度函数输运方程湍流燃烧模型开发自研软件,并实现WP11中折流燃烧室的高保真模拟。流动模拟中准确解析了该燃烧室中的三股主要气流,且三股气流分别约占进口流量的75%,12.5%和12.5%。两相燃烧模拟中针对拉格朗日框架下的液滴运动和欧拉框架下的湍流燃烧采用不同网格标记,模拟得到的出口径向温度分布规律与实验一致,平均相对误差为17.95%,表明基于本方法开发的自研软件能准确模拟折流燃烧室中的两相湍流燃烧现象。  相似文献   
405.
基于Navier-Stokes方程开展了不同气动布局参数下的涵道风扇非定常气动特性数值模拟研究。首先,结合滑移网格方法建立了适用于涵道风扇流场求解的数值模拟方法,并基于NASA涵道风扇试验模型开展了气动性能计算验证。随后,基于所建立的CFD方法开展了涵道风扇气动布局参数对其气动特性的影响研究,揭示了悬停状态下桨尖间隙和桨盘/涵道轴向相对位置对涵道风扇流场与气动性能的影响规律。结果表明:较大的桨尖间隙对桨尖涡的抑制作用减弱,导致涵道风扇的气动性能大幅降低,同时,桨尖涡强度的增加极大地改变了桨叶尖部的压强分布;当桨盘由基准位置向涵道出口方向移动时,涵道内的诱导速度分布发生改变,涵道唇口处气流速度降低,唇口的负压峰值下降,导致涵道拉力减小,当桨盘位置由基准位置向涵道入口移动时,桨尖涡的卷起对唇口处流动的影响加剧,导致涵道拉力明显降低。  相似文献   
406.
为研究驻涡燃烧室在前钝体燃料喷射状况下的燃烧性能,采用3维数值仿真模拟方法,对驻涡燃烧室前钝体燃料喷射 状况下的燃烧效率及燃烧室性能与无前钝体燃料喷射状况下的燃烧性能进行了对比分析,并对驻涡燃烧室的冷流以及燃烧状态 下的燃烧室性能进行了系统研究。燃烧室温度分布表明:前钝体顶部燃料喷射在0.2~0.7的喷射系数范围内,缩短了燃烧室火焰 长度,提高了燃烧室在相同轴向长度下的燃烧效率,使燃烧室更加紧凑;驻涡燃烧室前钝体顶部燃料喷射孔的孔径在一定范围内 的变化对燃烧室的燃烧效率、出口温度分布系数以及总压损失影响较小。  相似文献   
407.
邱华  陈延波  熊姹  盖景春 《推进技术》2022,43(7):299-307
为进一步提升现有涡轮喷气发动机推进性能,可以采用连续爆震加力燃烧室,针对此,本文首先建立考虑了三种耦合热力过程的连续爆震燃烧室热力过程分析模型,通过与传统涡轮发动机性能分析模型相耦合,分析了带连续爆震加力燃烧的涡轮发动机推进性能及加力燃烧室部件特性。结果表明,由于连续爆震燃烧室具有自增压特性,当将其替代传统加力燃烧室可以显著提升加力时涡轮发动机性能;但另一方面,作为加力燃烧室,由于涡轮后气流温度过高,导致连续爆震加力燃烧室增压比的降低,通过对发动机循环参数的选择可以得到改善;同时,连续爆震加力燃烧室部件特性还受到燃烧室进气损失、反应物填充速度及反应物提前燃烧比例影响。  相似文献   
408.
针对超燃冲压发动机研究中对燃烧室出口温度场的测量需求以及暂冲式超燃冲压发动机燃烧台架试验中的应用难点,开发了适用于瞬态燃烧场温度测量的单脉冲相干反斯托克斯拉曼反射(CARS)系统及CARS光谱计算和温度反演软件CARSCF。采用USED相位匹配方式来降低湍流影响,结合多尺度小波分析方法来实现CARS光谱降噪处理,提高信噪比。在暂冲式脉冲燃烧风洞上开展了来流马赫数2.6条件下超燃冲压发动机燃烧室出口温度测量试验,获取了超声速来流(冷态)建立、H2点火加热空气、建立超声速燃烧流场直至试验结束过程中的燃烧室出口温度,以及煤油/空气燃烧时燃烧室出口温度场分布。结果显示,超声速冷流时温度处于低温(约205K)状态,随着H2点火加热来流空气,来流温度上升至853K;随着煤油/Air点火,温度急剧上升,稳定燃烧状态下燃烧流场温度为1970K±144K。燃烧室出口截面温度场分布测量结果显示,高温区位于燃烧室出口截面上侧区域,而燃烧室出口截面上中间区域的温度低于上下两侧。燃烧室出口温度分布CARS测量结果与火焰自发光成像结果一致,表明单脉冲CARS技术用于瞬态燃烧流场温度测量的可行性。  相似文献   
409.
用RTR技术确定SRM燃烧室凝相粒子加入边界条件   总被引:3,自引:1,他引:2       下载免费PDF全文
由于缺乏有效的实验手段, 目前的SRM 颗粒轨道模型很不完善, 其中粒子的加入边界条件完全是建立在人为假设的基础上。针对这种情况, 发展了一种以实验为基础的确定凝相粒子加入边界条件的方法, 首先利用RTR技术对实验发动机热试车条件下凝相粒子的运动进行实验研究, 通过图象处理技术获得粒子的运动轨迹, 然后采用轨道模型法计算实验条件下凝相粒子的运动轨迹, 通过轨迹反推法给出了粒子加入边界条件。  相似文献   
410.
双燃式冲压发动机中超燃燃烧室冷态流场数值模拟   总被引:2,自引:1,他引:1  
采用Mac Corm ack 矢通分裂格式, 求解雷诺平均的N-S方程组, 采用Baldw in-Lo-m ax 代数湍流模型和混合长度模型, 模拟超燃燃烧室内两股平行超声速来流的冷态流场, 取得了与试验相一致的结果, 计算表明回流区和射流流动参数对超燃燃烧室流场内波系的变化有着较大的影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号