首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5136篇
  免费   1030篇
  国内免费   719篇
航空   4140篇
航天技术   684篇
综合类   626篇
航天   1435篇
  2024年   52篇
  2023年   241篇
  2022年   254篇
  2021年   283篇
  2020年   241篇
  2019年   278篇
  2018年   182篇
  2017年   240篇
  2016年   279篇
  2015年   254篇
  2014年   302篇
  2013年   244篇
  2012年   352篇
  2011年   373篇
  2010年   315篇
  2009年   293篇
  2008年   318篇
  2007年   397篇
  2006年   295篇
  2005年   270篇
  2004年   186篇
  2003年   195篇
  2002年   110篇
  2001年   165篇
  2000年   117篇
  1999年   85篇
  1998年   77篇
  1997年   67篇
  1996年   60篇
  1995年   32篇
  1994年   43篇
  1993年   66篇
  1992年   51篇
  1991年   51篇
  1990年   38篇
  1989年   33篇
  1988年   22篇
  1987年   14篇
  1986年   5篇
  1985年   2篇
  1982年   1篇
  1981年   2篇
排序方式: 共有6885条查询结果,搜索用时 15 毫秒
141.
提出了一种基于三角形及四面体非结构网格的有限体积法(FVM),用以鲁棒且精确地求解不可压粘性流动问题.与传统的FVM方法仅将体积分平均值(VIA)作为计算变量的做法不同,本文提出的方法将VIA及点值(PV)同时作为计算变量并在每个迭代步进行计算更新.VIA以通量形式进行计算以确保数值守恒,PV可以通过控制方程的不同形式进行求解更新,无需守恒,因此可以采用非常高效的方法进行求解.将PV作为增加的变量使得紧致网格模板得以实现更高阶精度的重构,而且由此获得的数值模型对于非结构网格变得更鲁棒.本文针对二维/三维的三角形/四面体非结构网格提出了数值格式,给出了几个基准测试算例,验证了本文提出的数值方法在采用非结构网格求解不可压粘性流动问题时的精确性和鲁棒性.  相似文献   
142.
蜂窝式轴心通风器油气分离性能计算   总被引:1,自引:1,他引:0  
为对航空发动机蜂窝式轴心通风器油气分离效率进行研究,建立考虑油气双向耦合的流场计算方法及油滴/壁面相互作用模型,在验证通风阻力及油气分离效率可靠性的基础上,对不同转速、通风流量和环境温度下蜂窝式轴心通风器的油气分离效果进行计算和分析.结果表明:转速的增加会使油气分离效率得到提升,而通风流量和环境温度的增加则导致油气分离效率的降低.蜂窝孔结构的加入对通风阻力影响不大,却对通风器的滑油分离过程起主要作用,计算表明其对滑油分离贡献率在80%以上.   相似文献   
143.
《中国航空学报》2016,(3):653-661
The tip leakage flow has an important influence on the performance of transonic com-pressor. Blade tip winglet has been proved to be an effective method to control the tip leakage flow in compressor, while the physical mechanisms of blade tip winglet have been poorly understood. A numerical study for a highly loaded transonic compressor rotor has been conducted to understand the effect of varying the location of blade tip winglet on the performance of the rotor. Two kinds of tip winglet were designed and investigated. The effects of blade tip winglet on the compressor over-all performance, stability and tip flow structure were presented and discussed. It is found that the interaction of the tip winglet with the flow in the tip region is different when the winglet is located at suction-side or pressure-side of the blade tip. Results indicate that the suction-side winglet (SW) is ineffective to improve the performance of compressor rotor. In addition, a significant stall range extension equivalent to 33.74% with a very small penalty in efficiency can be obtained by the pressure-side winglet (PW). An attempt has been made to explain the fundamental mechanisms of blade tip winglet in detail.  相似文献   
144.
凝胶推进剂的双股射流撞击雾化广泛应用于液体火箭发动机的燃烧室中,其破碎特征及雾化效果直接影响燃烧效率。为探究雾化特性的发展规律,采用直接数值模拟DNS方法,对射流速度为100m/s的剪切稀化非牛顿液体正交撞击产生的雾化特征、液体表面积、表面波、涡特性以及非牛顿特性开展研究。结果表明,射流下形成的雾化流场迅速扩张形成液膜,液膜两侧边缘破碎成大量的液丝与液滴,核心部分产生撞击波后在气体力的作用下逐步发展为带有凸起和褶皱的不稳定表面波,其撞击波波长最大可达2.46倍射流直径。液体表面积不断增长,但无量纲表面积总体呈现先下降再上升的趋势。气体中的涡量分布则分为有序附着区和无序爆炸区两类,并且涡量主要集中分布于气相区域。此外,射流撞击时产生强剪切使该液体内部的粘性系数下降,最低仅为初始粘性系数的0.3倍。  相似文献   
145.
赖正鑫  肖隐利  宋文艳 《推进技术》2020,41(10):2260-2275
为了深入理解低旋流流场特征和燃烧稳定性,基于OpenFOAM平台,采用动态k方程模型和有限速率PaSR模型对甲烷/空气预混低旋流燃烧进行了大涡模拟,研究了气流入口速度、当量比和压力等流场参数对流场结构和燃烧非稳态特性的影响,分析了流场大尺度结构与火焰相互作用。结果表明,流场结构和火焰抬升高度受入口速度影响较小,流场和火焰形态能够保持自相似性;随着当量比和压力提高,流场扩张性增强并在燃烧区下游产生回流区,火焰稳定不依赖回流区,根部火焰锋面形状由U形转变为W形,火焰抬升高度降低。火焰锋面稳定在剪切层,剪切层产生的周期性有序涡结构引起当地流场速度脉动和火焰表面褶皱,反映了流场非稳态特性;通过剪切层监测点瞬时轴向速度分析,涡结构特征频率随速度增大而提高,由250Hz提高至300Hz,随当量比和压力提高而降低,由250Hz降低至125Hz。  相似文献   
146.
采用磁控溅射设备,生长AuSn合金做焊料层、Al/Ni含能多层膜做热量提供层,实现了不锈钢和Al_2O_3间的异质材料自蔓延高温扩散焊。利用SEM、XRD和DSC等测试手段表征AuSn合金和Al/Ni含能多层膜的微观形貌、相成分和放热量;用万能试验机测试焊接接头的力学性能。结果表明,AuSn合金的质量比基本达到80∶20,而多层膜的层状结构清晰,反应热达到1 239 J/g。焊接实验结果表明,仅使用AuSn焊料时,剪切强度仅为46 MPa,在增加Al/Ni含能多层膜后,其剪切强度可达90 MPa,强度提高了约一倍。焊接接头的界面显微形貌和相结构研究表明,剪切强度的增强主要是Al/Ni多层膜提供了额外能量使得界面处的反应剧烈,陶瓷金属化层与中间层的反应加剧,形成了新的反应生成物。  相似文献   
147.
展向振荡对激波/湍流边界层干扰的影响   总被引:2,自引:2,他引:0  
孙东  刘朋欣  童福林 《航空学报》2020,41(12):124054-124054
周期振荡作为一种有效的壁面流动控制手段受到广泛关注,而其对激波/湍流边界层干扰的影响目前鲜有研究。本文采用高精度直接数值模拟(DNS)方法对马赫数2.9、12°激波入射角、强振荡下的激波/湍流边界层干扰进行了系统研究。通过与无振荡工况的定量比较,揭示了展向强振荡对干扰区内复杂流动结构的影响规律及作用机制,如分离泡尺度、物面压力脉动非定常特性、物面剪切的非定常特性及统计特征等。研究发现:在展向强振荡作用下,分离点位置提前,间歇区长度增大;同时由于分离泡内强黏性耗散的影响,展向振荡的穿透高度约为分离泡高度的4%,因而对流动结构不会产生实质影响。但展向强振荡会对壁面附近流动造成显著影响,如强振荡诱导的壁面展向速度远大于流向速度,造成流向剪切与展向剪切之间夹角的概率密度函数峰值从0°偏移到80°~90°之间。物面压力及剪切本征正交分解分析表明,展向振荡会导致模态能量从低阶模态向高阶模态转移,降低低频运动的能量占比,增强再附后Görtler涡等壁面附近旋涡结构的强度。  相似文献   
148.
超声速膨胀角入射激波/湍流边界层干扰直接数值模拟   总被引:2,自引:2,他引:0  
童福林  孙东  袁先旭  李新亮 《航空学报》2020,41(3):123328-123328
为了揭示膨胀效应对激波/湍流边界层干扰区内复杂流动现象的影响规律,采用直接数值模拟方法对来流马赫数2.9、30°激波角的入射激波与10°膨胀角湍流边界层相互作用问题进行了数值研究。系统地探讨了激波入射点分别位于膨胀角上游、膨胀角角点和膨胀角下游3种工况下膨胀角干扰区内若干基本流动现象,如分离泡、物面压力脉动及激波非定常运动、湍流边界层统计特性和相干结构动力学过程等。结果表明,激波入射点流向位置改变对分离区流向和法向尺度的影响显著,尤其是当激波入射点位于角点及其下游区域。研究发现,膨胀角干扰区内物面压力脉动强度急剧减小,分离区内压力波向下游传播速度将降低而在膨胀区内将升高,膨胀效应极大地抑制了分离激波的低频振荡运动。相较于入射激波与平板湍流边界层干扰,入射激波流向位置改变对膨胀角再附区速度剖面对数区及尾迹区影响显著,将导致其内层结构参数升高而外层降低,近壁区内将呈现远离一组元湍流状态的趋势。此外,流向速度脉动场本征正交分解分析指出,主模态空间结构集中在分离激波及剪切层根部附近而高阶模态以边界层内小尺度正负交替脉动结构为主。低阶重构流场结果表明,前者对应为分离泡低频膨胀/收缩过程而后者表征为分离泡高频脉动。  相似文献   
149.
童福林  周桂宇  孙东  李新亮 《航空学报》2020,41(9):123731-123731
采用直接数值模拟方法对来流马赫数2.9,30°激波角的入射激波与膨胀角湍流边界层干扰问题进行了数值研究。入射激波在壁面上的名义入射点固定在膨胀角角点,膨胀角角度分别取为0°、2°、5°和10°。通过改变膨胀角角度,考察了膨胀效应对干扰区内复杂流动现象的影响规律和作用机制,如分离泡、物面压力脉动特性、膨胀区湍流边界层和物面剪切应力脉动场等。研究发现,膨胀角角度的增大使得分离区流向长度和法向高度急剧降低,尤其是在强膨胀效应下分离泡形态呈现整体往下游偏移的双峰结构。物面压力脉动功率谱结果表明,膨胀角为2°和5°时,分离激波的非定常运动仍表征为大尺度低频振荡,而膨胀角为10°,强膨胀效应极大地抑制了分离激波的低频振荡,加速了下游再附边界层物面压力脉动的恢复过程。膨胀区湍流边界层雷诺剪切应力各象限事件贡献和出现概率呈现逐步恢复到上游湍流边界层的趋势,Görtler-like流向涡结构展向和法向尺度变化剧烈,同时在近壁区将诱导生成大量小尺度流向涡。此外,物面剪切应力脉动场的本征正交分解分析指出,膨胀效应的影响体现在低阶模态能量的急剧降低从而使得高阶模态的总体贡献相对升高。  相似文献   
150.
基于RANS/LES混合方法的分离流动模拟   总被引:1,自引:1,他引:0  
陈浩  袁先旭  毕林  华如豪  司芳芳  唐志共 《航空学报》2020,41(8):123642-123642
飞行器在大迎角、快速俯仰机动时,流场中含有大尺度、非定常的涡结构,传统雷诺平均Navier-Stokes (RANS)模型不能准确模拟流场结构,根据国际上相关研究的发展趋势,需要采用混合RANS/大涡模拟(LES)模型来对复杂分离流动进行准确模拟。本文对基于分区混合与湍流尺度混合的双重RANS/LES混合计算模型进行发展与应用。通过典型简化模型的静、动态湍流大分离流动,测试和验证所采用的脱体涡模拟(DES)类方法,重点研究改进的延迟DES (IDDES)模型在动态问题应用中的正确性和有效性,并对所采用的数值模拟方法和相应的计算软件的可靠性、鲁棒性以及精度进行了考核验证。典型算例包括超声速圆柱底部流动、跨声速方腔流动、NACA0015机翼深失速分离涡模拟等。计算表明:发展的IDDES类混合计算模型可有效解决对数层不匹配的问题;对于定态非定常分离流动,DES、DDES、IDDES等模型计算结果差别不大,随着流动的非定常特性增强,IDDES模型的优势逐渐显现;对于动态非定常分离流动,则需要采用IDDES类模型。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号