首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   565篇
  免费   211篇
  国内免费   75篇
航空   669篇
航天技术   64篇
综合类   46篇
航天   72篇
  2024年   7篇
  2023年   38篇
  2022年   34篇
  2021年   33篇
  2020年   46篇
  2019年   42篇
  2018年   27篇
  2017年   43篇
  2016年   42篇
  2015年   34篇
  2014年   42篇
  2013年   42篇
  2012年   43篇
  2011年   32篇
  2010年   34篇
  2009年   26篇
  2008年   46篇
  2007年   41篇
  2006年   23篇
  2005年   18篇
  2004年   17篇
  2003年   14篇
  2002年   19篇
  2001年   13篇
  2000年   12篇
  1999年   9篇
  1998年   9篇
  1997年   7篇
  1996年   11篇
  1995年   4篇
  1994年   6篇
  1993年   10篇
  1992年   10篇
  1991年   1篇
  1990年   5篇
  1989年   3篇
  1986年   1篇
  1984年   1篇
  1983年   4篇
  1982年   1篇
  1980年   1篇
排序方式: 共有851条查询结果,搜索用时 216 毫秒
641.
针对某加注系统在某任务过程中两台贮罐并联供液时其中一台发生出液受堵问题,为避免再次发生类似问题,建立系统物理模型,通过流体动力学连续方程和动能方程进行分析计算,找出了导致问题产生的主要原因。利用FLUENT仿真软件对两罐汇流区域进行数值模拟和结果分析,验证了并联贮罐出液受堵问题发生的根本原因,提出了针对性措施。  相似文献   
642.
基于三维实体建模的刷式密封传热机理数值研究   总被引:4,自引:4,他引:0  
建立了基于三维实体建模的刷式密封传热特性求解模型,在验证数值模型准确性的基础上,分析了刷式密封流场与温度场分布特性,研究了压比、转速、干涉量和热流密度对刷丝最高温度的影响,揭示了刷式密封的传热机理。结果表明:高温区主要集中在末排刷丝与转子面接触位置,刷丝的最高温度随着压比、转速、干涉量和热流密度增加而增大,其中干涉量对刷丝最高温度的影响最为明显。当干涉量从0.1 mm增至0.7 mm时,刷丝的最高温度上升1.61倍;刷式密封热量的主要来源为刷丝与转子表面摩擦产生的热量,其传热形式包括导热和对流换热,摩擦热量通过导热形式进入刷丝和转子,当刷丝与转子之间的接触力增加时,摩擦热量增大,刷丝的最高温度升高,摩擦热量通过对流换热形式在流体和固体之间进行传递,热量散失主要形式为泄漏气流带走部分热量。   相似文献   
643.
超声速压气机叶栅前缘通道激波损失的鼓包控制研究   总被引:1,自引:0,他引:1  
为了有效减小超声速压气机叶栅变进气马赫数条件下的前缘通道激波损失及由激波诱导的边界层分离,提出了一种带有平直过渡区的新型鼓包结构,并采用数值方法详细分析了新型鼓包结构对激波与激波/边界层相互作用机理以及鼓包几何尺寸与位置对控制效果的影响机制。研究结果表明:新型鼓包在迎风侧凹面产生的压缩波系有效削弱了前缘通道激波的强度,鼓包过渡区产生的膨胀波系使边界层流体加速,明显抑制了局部流动分离,并使分离提前再附。当某一超声速压气机叶栅的前缘通道激波入射在鼓包的过渡区范围内,鼓包高度为0.35倍的边界层厚度且鼓包迎风侧与背风侧长度分别为过渡区长度4倍与5倍时,可以实现较好的控制效果。此外,与无鼓包方案相比,新型鼓包结构可使超声压气机叶栅在设计工况下的总压损失减少4.6%,同时超声速压气机叶栅进气马赫数在1.65~1.8范围内仍能取得较好的气动减损效果。   相似文献   
644.
朱涛 《航空发动机》2019,45(6):62-65
航空发动机燃烧室的压力损失特性对发动机整机性能有着重要影响。为了解燃烧室进口气流参数对流动阻力的影响规律,对3头部矩形燃烧室进行吹风试验,研究了不同燃烧室进口气流速度、压力、温度及燃烧状态对总压损失的影响。试验结果表明:燃烧室总压损失系数与进口马赫数的平方成正比关系;进口气流的温度、压力对流动阻力特性基本无影响;燃烧室总压损失系数随着油气比的增大而增大。  相似文献   
645.
为提高燃气轮机冷气品质,基于简化的燃气轮机盖板式预旋系统,采用数值模拟方法,对比研究了进、出口压比和无量纲质量流量、旋转雷诺数对蒸汽和空气预旋系统温降和流阻特性的影响规律,并以二氧化碳作为对比研究对象,分析了其流动特性存在差异的原因。结果表明:空气的预旋温降性能明显优于蒸汽的;蒸汽和空气的预旋温降性能均随进、出口压力或无量纲质量流量的增大而降低;当旋转雷诺数由3.4×106增至7.1×106时,空气的无量纲总温降逐渐增大,而蒸汽的则先增大后减小;但空气与蒸汽的流阻性能相差不大,其总压损失系数均随无量纲质量流量增加而增大,随旋转雷诺数增大而减小。  相似文献   
646.
针对飞机全尺寸疲劳试验中结构局部出现裂纹的问题,以美国联邦航空局(FAA)咨询通报AC 23-13A中提供的指导性方法为基础,基于全尺寸试验的1g应力测量结果,对有限元分析模型进行验证,并对飞机结构薄弱部位进行疲劳优化设计研究。研究结果表明,基于试验,通过优化框缘结构尺寸,降低结构的附加弯曲应力和应力集中系数,提高了结构疲劳寿命,对飞机结构设计以及疲劳评定有直接参考价值。  相似文献   
647.
崔涛  王松涛  汪帅  温风波  王仲奇 《推进技术》2019,40(8):1767-1779
为了探究CST (形状函数变换技术)造型方法在涡轮叶片前缘修型中的应用效果,完善了CST方法在前缘型线重构中的实施细节,数值模拟了雷诺数对前缘修型前后叶型损失及边界层特性的影响,验证了CST前缘修型方法在新型高速飞行器低压涡轮中的实用性。结果显示:CST方法前缘修型可以消除HD叶型吸力侧前缘的压力峰和分离泡,从而使得高雷诺数条件下吸力侧分离诱导的边界层转捩现象延迟发生,叶型损失降低32%,拓展了低损失状态的雷诺数范围。吸力侧损失的降低在低雷诺数条件下主要来自于前缘附近的剪切层,而高雷诺数条件下主要来自于前缘剪切层和扩压段前的层流边界层。新型高速空天飞行器低压涡轮叶片采用CST前缘修型对提升效率是有效的,在设计点状态附近效率提高0.1%,而膨胀比较低的大负攻角状态下效率提升0.3%~0.5%,损失降低的位置主要集中在叶展中部压力侧边界层和根部的二次流区域。  相似文献   
648.
具有微小W型肋的结构化表面冲击冷却实验   总被引:1,自引:1,他引:0  
陈鹏  饶宇  万超一 《航空动力学报》2017,32(9):2110-2117
将冲击冷却技术与肋化表面相结合,研究了一种具有微小W型肋的表面射流冲击冷却结构。通过稳态实验和瞬态热色液晶测试技术来探究光滑靶板和微小W型肋靶板的传热特性。测试时的冲击间距比为1.5,3和5,基于水利直径的雷诺数为15000~40000。结果表明:两种靶板的平均努塞尔数和压力损失均随雷诺数的增加而增加,随冲击间距比的增加而减小。当冲击间距比为1.5时,与光滑靶板相比,微小W型肋靶板的平均努塞尔数提高了5.1%~7.3%,压力损失却几乎不变。但当冲击间距比大于3时,由微小W型肋带来的强化传热效果并不显著。   相似文献   
649.
涡轮集气腔流动特性研究及流阻计算模型   总被引:1,自引:1,他引:0       下载免费PDF全文
为了探究航空发动机涡轮集气腔的流动特性,对4个主进气口、双排125个出流孔的涡轮集气腔出口流量分配规律和流阻系数进行了实验研究,重点分析了进出口压比、集气腔腔室高度等参数变化带来的影响。研究发现,正对主进气口的出流孔流量最大,而紧邻其两侧的周向出流孔流量明显减小。随着出流孔周向位置远离主进气口,出流孔流量迅速恢复并基本维持一个定值。但是位于每2个主进气口间1/2周向夹角位置,会出现最小的出流流量。实验结果表明,尽管周向上局部出流孔出现了极大和极小出流流量,但其仅为进口总流量的9.34%和3.29%。在本文实验参数范围内,随着进出口压比、集气腔高度的增加,通过集气腔的空气流量均变大,但并没有改变周向出流孔的流量分配规律。两者相比,集气腔高度带来的影响明显微弱。最终本文拟合得到了流阻损失系数同集气腔几何参数、进/出口气动参数之间的经验关系式,并将其应用于开发的一维空气系统集气腔元件中,为后续空气系统的设计与优化提供依据。  相似文献   
650.
跨声速级不同转速下静叶的损失特性   总被引:1,自引:1,他引:0  
为讨论不同转速下静叶的气动及损失特性,在09倍设计转速下对某跨声速单级压气机进行了试验测量,获得了级特性曲线并对数值计算方法进行了校核。利用校核后的数值软件对07~11倍设计转速下压气机静叶内部流场进行了详细的数值研究,探讨了转速变化对静叶内部流场结构的影响机制,分析了流场结构与损失分布的关联性,对比了不同损失评价标准并给出了各自对于叶片优化设计的指导意义。结果表明:随着转速的增加静叶顶部流场持续恶化,而叶根和叶中流场变化较小;流道内的旋涡和压力梯度输运了低能流体团,造成了低能流体在流场中的积聚而形成高损失区。   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号