首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   18篇
  国内免费   12篇
航空   82篇
航天技术   11篇
综合类   5篇
航天   9篇
  2024年   1篇
  2023年   2篇
  2022年   5篇
  2021年   6篇
  2020年   8篇
  2019年   4篇
  2018年   3篇
  2017年   3篇
  2016年   1篇
  2015年   7篇
  2014年   6篇
  2013年   8篇
  2012年   4篇
  2011年   6篇
  2010年   2篇
  2009年   7篇
  2008年   2篇
  2007年   8篇
  2006年   7篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   2篇
  1994年   1篇
  1993年   4篇
  1992年   1篇
  1991年   1篇
排序方式: 共有107条查询结果,搜索用时 0 毫秒
101.
为研究固体火箭发动机斜切喷管流场与推力特性,采用非定常可压缩N-S方程与Realizablek-ε湍流模型相结合的方法,并运用混合网格技术,对不同角度斜切喷管的流场特性与推力特性进行数值模拟研究。结果表明,对于斜切喷管发动机,当喷管入口采用倾斜安装形式时,会存在一定的质量流量损失,喷管实际质量流量为理论流量的0.938;对于不同角度的斜切喷管,喷管喉部与喷管扩张段对称结构部分的速度场分布状况基本相同,而在喷管扩张段非对称部分,速度场分布存在一定的单边现象;当喷管斜切角度从45°增大到90°时,喷管轴向推力Fx线性增大,侧向推力Fy线性减小,推力偏转角度则从2.323°减小到0.063°,但对发动机喷管中燃气的质量流量与喷管总推力的影响不大。  相似文献   
102.
凸轮检测起始转角的求解方法   总被引:1,自引:1,他引:1  
刘瑞玲 《航空计测技术》2002,22(3):25-27,38
介绍了确定凸轮检测起始转角的4种求解方法,并就其使用进行了讨论。  相似文献   
103.
建立了典型三点式倾转旋翼无人机动力学模型,针对过渡过程,开展最优倾转角曲线研究以减小横侧控制耦合对纵向运动影响和过渡过程能耗。基于倾转角曲线对过渡过程的影响分析,提出了改进运动剖面算法对倾转角曲线进行参数化设计;并提出两阶段优化方案来对参数进行优化。第1阶段,综合考虑横侧控制耦合度最低和过渡过程能耗最小目标,以曲线参数为优化变量,构建了最优倾转角问题模型,采用遗传算法进行优化求解。第2阶段,引入舵机动力学模型,考虑过渡时间和系统超调进一步优化以减小结束阶段的超调。与2种现有典型倾转角曲线对比结果表明:给定过渡时间,设计的最优倾转角曲线有效地降低横向控制耦合程度和过渡过程的能耗,且减小结束时超调。   相似文献   
104.
平面扩压叶栅最佳弯叶片生成线与叶栅折转角的关系   总被引:1,自引:1,他引:0  
用优化的方法研究了扩压叶栅最佳弯叶片生成线与叶栅折转角之间的关系,在8个不同叶栅折转角下优化弯叶片生成线的弯角和弯高.积叠线是由两段贝塞尔曲线和一段直线组成,在这种积叠线形式下,相同弯角下弯叶片损失随弯高增大不断减小,弯叶片的最佳弯高为0.5.在相同的叶栅折转角下弯叶片损失随弯角增大先减小后增大,存在最佳弯角使弯叶片总损失最小.随着叶栅折转角增大,弯叶片收益增大.最佳弯角随着叶栅折转角的增加有增大的趋势.在给定计算条件下,最佳弯角与叶栅折转角之间呈类似线性变化规律.   相似文献   
105.
三轴承旋转喷管型面设计与分析   总被引:1,自引:0,他引:1  
通过对短距/垂直起降用三轴承旋转喷管工作原理的分析,给出了型面设计的技术指标,并对三轴承旋转喷管型面进行了分析,探讨了等直段、型面过渡段、收缩喷管段的设计方法。同时,基于某型涡喷发动机开展了数值模拟分析,发现喷管推力矢量有效偏转角与喷管偏转角度大致呈线性关系,且前者约为后者的1.021倍,则设计的三轴承旋转喷管具有产生矢量推力的能力,满足了型面设计的要求。  相似文献   
106.
107.
附面层吸除对大转角压气机叶栅气动性能影响的数值研究   总被引:15,自引:12,他引:15  
数值模拟了低速条件下附面层吸除对某大转角压气机叶栅气动性能的影响。结果表明,叶栅进口马赫数一定时,小吸气量下存在使叶栅总压损失降低最大的最佳吸气位置,大吸气量时吸气位置对损失影响减弱;随吸气量增加,吸力面角区低能流体积聚明显减小,气流折转能力加强,叶栅负荷增加,总压损失降低最高达28.2%;吸气导致的栅内扩压能力恢复和通道涡三维分离效应是确定最佳吸气位置及吸气量的判定原则。   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号