首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10874篇
  免费   1774篇
  国内免费   1476篇
航空   7696篇
航天技术   1509篇
综合类   1309篇
航天   3610篇
  2024年   72篇
  2023年   297篇
  2022年   397篇
  2021年   392篇
  2020年   413篇
  2019年   446篇
  2018年   257篇
  2017年   386篇
  2016年   398篇
  2015年   404篇
  2014年   516篇
  2013年   493篇
  2012年   689篇
  2011年   658篇
  2010年   601篇
  2009年   590篇
  2008年   575篇
  2007年   512篇
  2006年   482篇
  2005年   518篇
  2004年   469篇
  2003年   490篇
  2002年   373篇
  2001年   432篇
  2000年   307篇
  1999年   259篇
  1998年   268篇
  1997年   278篇
  1996年   287篇
  1995年   280篇
  1994年   244篇
  1993年   227篇
  1992年   239篇
  1991年   234篇
  1990年   191篇
  1989年   214篇
  1988年   88篇
  1987年   84篇
  1986年   30篇
  1985年   9篇
  1984年   7篇
  1983年   2篇
  1982年   4篇
  1981年   10篇
  1980年   2篇
排序方式: 共有10000条查询结果,搜索用时 21 毫秒
961.
由于现有的噪声分析方法无法很好地评估在复杂环境下冷原子干涉仪的输出特性,本文提出了一种新的冷原子干涉仪仿真方法,可以模拟大动态条件下各项噪声及其之间的耦合对冷原子干涉仪的影响。利用单粒子波包演化的处理方式对冷原子干涉仪进行全过程物理建模,并采取蒙特卡罗方法对大量确定初态的原子进行全过程统计,最终得到冷原子干涉仪在多种噪声同时存在的情况下的响应。该方法主要优势体现在能够对噪声耦合情形进行高精度仿真,并且可以根据实际数据对干涉仪输出进行实时处理,以提升冷原子干涉仪的性能指标。  相似文献   
962.
进气道载荷的预示和限制是超声速飞行器设计中的关键问题。以典型颌下进气超声速飞行器为研究对象,对其进气道流场进行数值仿真,研究不同马赫数、攻角、侧滑角及余气系数条件下的进气道压力特性;针 对进气道压力工程估算及设计需求,使用无量纲和解耦的方法,对进气道压力经验公式进行拟合;反算飞行试 验中的进气道压力,并与测量结果进行对比。结果表明:进气道压力随马赫数增大而增大,随余气系数增大而 减小;正常工作包线内,较小的攻角、侧滑角对进气道压力影响不明显;进气道压力经验公式计算值与飞行试验 测量值符合较好,具有较高的精度。  相似文献   
963.
吴大方  林鹭劲  吴文军  孙陈诚 《航空学报》2020,41(7):223612-223612
远程高超声速飞行器处于极为恶劣的气动加热与振动耦合环境中,长时间的高温与振动载荷相互叠加会导致飞行器热防护材料出现裂纹、错位、剥离或脱落,甚至会引发致命的安全事故。因此热防护材料在极端高温环境下的地面热/振联合试验测试,对于高超声速飞行器的安全可靠性设计极为重要。建立高温与振动复合试验环境,设法解决轻质多孔隔热材料在强振动下,表面温度难于准确测量与控制的难题,制作水冷式隔热装置保护价格昂贵的振动激励设备等,实现了1 500℃高温环境下高超声速飞行器轻质隔热材料的热/振联合试验。得到非金属隔热材料陶瓷纤维板内部的断裂形貌及裂纹断面特征。根据试验前、后材料的表观及微观变化以及内部结合剂的变化等试验结果,对材料进行改进。经过试验测试后,达到了使用要求。本文建立的1 500℃极端高温环境下的热/振联合试验系统及试验结果为远程高超声速飞行器热防护材料的抗振动能力评估、隔热效果确定以及材料性能的改进提供了重要支撑。  相似文献   
964.
地面保压试验是综合评估囊体材料性能的重要手段,其设计指标将影响平流层浮空器总体驻空高度与时间的变化范围。以球形超压平流层浮空器为例,建立了驻空高度运动学模型、热力学模型及基于微孔损伤的氦气渗透模型,综合考虑驻空过程中力、热耦合引起的浮空器内部氦气压力、温度和质量等的实时变化,以囊体材料微孔当量直径为桥梁建立了平流层浮空器地面保压指标与驻空高度、驻空时间的耦合关系,通过定量分析不同保压指标下浮空器驻空性能的变化情况,提取影响规律,为保压指标的合理设计提供总体参考。  相似文献   
965.
沈文静  彭志军  李彬  叶彬 《航空学报》2016,37(7):2218-2224
飞机起落架的收放大部分是在飞机飞行时进行的,起落架主要承受着飞行时的气动载荷、质量力和惯性载荷,这些载荷的大小或方向随着飞机的飞行速度和起落架的收放不断发生变化。在地面进行起落架收放系统可靠性试验时,为真实反映起落架收放时的收放载荷,施加多大的收放载荷以及如何施加收放载荷成为起落架收放系统可靠性试验中的关键技术。本文对某型飞机起落架收放载荷进行了研究,提出了起落架收放载荷当量化处理的一种方法,并采用动力学软件对当量化结果进行了模拟分析,分析结果与飞行实测结果十分吻合,而且该当量化方法简易可行,便于在起落架收放系统可靠性试验中施加载荷。  相似文献   
966.
李翔  傅波 《航空学报》2016,37(Z1):73-79
为解决高超声速飞行器复杂结构热试验加热器设计难题,以高超声速飞行器钝头体试验样段为研究对象,对复杂结构热试验从试验方案确定,加热器详细设计,温度、应变、位移的测量及热流控制方法等相关技术进行研究。通过自行设计的红外加热器完成了钝头体试验样段的高温试验,获得了大量的温度、应变、位移等试验数据。通过本次研究,梳理了高超声速飞行器复杂结构加热器设计流程,为优化结构设计提供了重要试验数据支持。  相似文献   
967.
双发进气道抽吸试验系统及流量高精度测量技术   总被引:2,自引:0,他引:2  
针对常规进气道试验方法存在流量测量精度低、综合试验能力差等诸多问题,及无法满足不同类型进气道在不同工况下开展性能试验的需要的状况,建立了一套应用于TBCC等双发发动机进气道风洞试验的抽吸试验系统及流量高精度测量技术.系统采用文氏流量计测量方法,以提高进气道流量测量的精度;采用在流量计末端直接加装中压环形引射器抽吸进气道主气流的方法,以满足不同类型进气道在不同工况下对吸入流量的需求;通过设计两套独立的管道系统并分别进行流量的测量与控制,以满足双发进气道不同工况性能匹配和耦合试验的需求.通过风洞验证试验验证了流量计的测量效果和引射器的引射能力,通过风洞应用试验验证了试验系统对不同形式进气道的综合试验能力.试验结果表明,试验系统测量精度高,引射抽吸能力和综合试验能力强,能全面满足各类进气道风洞试验的需求.  相似文献   
968.
2m量级高速风洞强迫振动动导数试验技术研究   总被引:1,自引:0,他引:1  
为满足大型运输机、先进战斗机、推进与机体一体化布局等现代高性能飞行器动导数风洞试验研究的需求,基于小振幅强迫振动动导数试验原理,在中国空气动力研究与发展中心2 m 量级高速风洞(FL-26和 FL-28)建立了一套俯仰、滚转及偏航的三通道动导数试验技术。在试验系统研制过程中,首先采用强度高、刚性好的航空轻质铝材和复合材料解决了亚跨超声速条件下大尺度试验模型研制问题;其次,结合动力学和运动学仿真分析手段,实现并优化了大载荷试验装置传动机构设计以及α、β耦合双转轴支撑结构设计的难题;最后,在测控系统研制部分,通过电机选取、电磁干扰屏蔽、滤波器设计等技术手段进一步提高了测试系统的精度。试验系统设计技术指标Ma=0.4~4.25,迎角α=-35°~35°,侧滑角β=-15°~15°,传动机构法向承载载荷≤10000 N。SDM 标模的验证试验结果表明,直接阻尼导数与文献值一致性较好,重复性试验数据误差基本控制在10%以内。目前,该项试验技术已经成功应用于某大型飞机模型的动导数风洞试验。  相似文献   
969.
风洞试验是由很多环节组成的高精度空气动力试验。本文对如何避免过失误差,控制好偶然误差以提高风洞不同期试验精度提出了一些建议。  相似文献   
970.
利用超声波水浸聚焦入射法对1 mm厚的SUS304奥氏体不锈钢板点焊接头进行超声C扫描成像检测;研究了不同焊接工艺参数下获得点焊接头的超声波C扫描图像特征,据此分析了接头的焊核直径,并与焊核切口端面尺寸进行了比较;对点焊接头进行了拉伸—剪切试验,测试了接头的力学性能。结果表明:超声波水浸聚焦入射法能够观测出点焊焊核直径,并能有效地观测出焊核内部形貌特征。当焊接电流为定值(4k A),供给压力为0.15 MPa时,接头出现飞溅、焊穿等缺陷,并且在超声波C扫描图像中能够清晰地反映出来;当供给压力为0.45 MPa时,虽然点焊焊核直径增大,且未出现焊接缺陷,但是过大的供给压力导致接头厚度变小,影响了接头抗拉强度。当供给压力为定值(0.4 MPa),焊接电流为9 k A时,在C扫描图像上同样反映出飞溅、焊穿等典型的焊接缺陷,此时接头的失效载荷及能量吸收值急剧下降。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号