全文获取类型
收费全文 | 699篇 |
免费 | 205篇 |
国内免费 | 59篇 |
专业分类
航空 | 621篇 |
航天技术 | 37篇 |
综合类 | 79篇 |
航天 | 226篇 |
出版年
2024年 | 6篇 |
2023年 | 17篇 |
2022年 | 32篇 |
2021年 | 32篇 |
2020年 | 32篇 |
2019年 | 29篇 |
2018年 | 20篇 |
2017年 | 24篇 |
2016年 | 19篇 |
2015年 | 19篇 |
2014年 | 26篇 |
2013年 | 31篇 |
2012年 | 19篇 |
2011年 | 32篇 |
2010年 | 33篇 |
2009年 | 30篇 |
2008年 | 39篇 |
2007年 | 44篇 |
2006年 | 30篇 |
2005年 | 26篇 |
2004年 | 31篇 |
2003年 | 27篇 |
2002年 | 26篇 |
2001年 | 26篇 |
2000年 | 39篇 |
1999年 | 35篇 |
1998年 | 26篇 |
1997年 | 28篇 |
1996年 | 19篇 |
1995年 | 18篇 |
1994年 | 17篇 |
1993年 | 13篇 |
1992年 | 21篇 |
1991年 | 20篇 |
1990年 | 21篇 |
1989年 | 21篇 |
1988年 | 10篇 |
1987年 | 18篇 |
1986年 | 2篇 |
1985年 | 2篇 |
1983年 | 2篇 |
1980年 | 1篇 |
排序方式: 共有963条查询结果,搜索用时 15 毫秒
91.
92.
93.
二硝酸胺铵(ADN)分子式为NH4N(NO2)2。,不含卤素,能量密度高,高温稳定性好,作为推进剂,燃烧不产生烟,是复合推进剂中最有希望的替代氧化剂之一。据美国推进与动力杂志载文,英国剑桥大学用高速摄影方法研究了ADN与GAP粘合剂的冲击响应。结果表明,ADN的粉末比高氯酸铵稍稍敏感(在他们所用的落锤仪上)。试验还发现,ADN能被高熔点粗砂(60μm硬玻璃粉)和脆性聚合物敏化,高密度聚乙烯可抑制其爆燃。新的有希望的氧化剂──二硝酰胺铵(ADN)@文战元 相似文献
94.
研究了三元乙丙橡胶内绝热层分别与高硅氧纤维、芳纶纤维及碳纤维织物复合后绝热层的烧蚀性能.结果表明:绝热层与纤维织物复合可以提高绝热层的烧蚀性能;在这三种复合方法中,前两种织物分别铺设在绝热层表面的烧蚀性能优于将织物铺设在绝热层内部,后一种织物铺设在绝热层内部的烧蚀性能优于将织物铺设在绝热层表面;相比较而言,加入芳纶纤维织物绝热层的烧蚀性能最好,碳纤维织物绝热层的次之.高硅氧纤维织物绝热层的最差. 相似文献
95.
《航天制造技术》2008,(4)
采用有限元方法,对1-3型压电纤维复合材料macro-fiber composites(MFC)建立微机电模型,讨论了交叉指形电极关键尺寸、两相结构尺寸对驱动性能的影响。结果表明:分支电极中心距p一定时,取较大的分支电极宽度w可得到较大的自由应变和夹持应力;当分支电极宽度w不变时,随p/w的增加,自由应变增加而夹持应力减小;采用交叉指形电极结构可使1-3型压电纤维复合材料具有较高的横观各向异性,横向效应系数可提高2.3倍。较小的聚合物层厚度a、纤维截面尺寸c有助于提高压电纤维复合材料的驱动性能,较小的纤维间聚合物宽度b有助于提高压电纤维复合材料的自由应变,而同时夹持应力则相应降低。 相似文献
96.
借鉴网络理论,对环形压力容器纤维缠绕规律及线型进行了探索和分析,选择了合适的增强材料、树脂配方及成型工艺方案,优化调整了预浸纱工艺参数、缠绕工艺参数,试制的产品成功地经过了试验考核。 相似文献
97.
98.
高强度纤维缠绕增强的软壁机匣是大型航空发动机轻质风扇机匣的主要选型之一。针对大型航空发动机软壁包容机匣的总体设计思路,从结构特点、数值分析技术、试验方法、纤维性能考核等方面研究了其包容性分析设计的方法。分析了软壁风扇包容机匣的结构特点,较适用于工程、机理分析地连续介质模型和纱线模型,得出了旋转打靶试验能有效考虑关键因素,而部件包容试验则能初步验证包容能力,数值仿真与部件试验相结合能快速掌握软壁机匣的包容性设计方法。此外,软壁机匣外层纤维织物的拉伸、剪切、摩擦、应变率效应、抗老化测试等性能测试,可为选取优良的纤维织物以及发展适用的材料模型提供参考和依据。 相似文献
99.
100.
刘永刚%沈星%赵东标%裘进浩 《宇航材料工艺》2007,37(5):18-21,33
以提高交叉指形电极压电纤维复合材料诱导应变和挟持应力为目的,采用有限元软件ANSYS分析了电极区聚合物参数、交叉指型电极结构和压电相体积分数对压电纤维复合材料诱导应变和挟持应力的影响。结果表明:增加电极区聚合物的介电常数或减小电极区聚合物的厚度,能够提高元件的诱导应变和挟持应力,元件诱导应变最大可达173με;减小分支电极的周期或者适当增大分支电极的宽度,可以有效地提高元件的作动性能;提高压电纤维体积分数,有利于提高元件的作动性能。 相似文献