首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2224篇
  免费   544篇
  国内免费   318篇
航空   2175篇
航天技术   248篇
综合类   313篇
航天   350篇
  2024年   16篇
  2023年   81篇
  2022年   103篇
  2021年   93篇
  2020年   92篇
  2019年   101篇
  2018年   77篇
  2017年   88篇
  2016年   92篇
  2015年   98篇
  2014年   106篇
  2013年   98篇
  2012年   117篇
  2011年   114篇
  2010年   114篇
  2009年   113篇
  2008年   123篇
  2007年   111篇
  2006年   76篇
  2005年   83篇
  2004年   82篇
  2003年   66篇
  2002年   91篇
  2001年   78篇
  2000年   82篇
  1999年   63篇
  1998年   63篇
  1997年   69篇
  1996年   89篇
  1995年   55篇
  1994年   54篇
  1993年   66篇
  1992年   48篇
  1991年   65篇
  1990年   69篇
  1989年   79篇
  1988年   49篇
  1987年   6篇
  1986年   4篇
  1985年   6篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1980年   1篇
排序方式: 共有3086条查询结果,搜索用时 312 毫秒
281.
对某矩形高负荷扩压叶栅在不同弦向位置开设全叶高抽吸槽的5组方案进行了数值研究,分析了抽吸槽弦向位置等参数对抽吸量分布规律的影响;通过叶栅实验探究了局部展向抽吸方案的效果.数值仿真的计算域包含吸附叶片内部的真空腔,边界条件按照实验条件设置.研究发现:全叶高抽吸方案的抽吸量沿展向大致呈C型分布;叶高中部和端部的主要抽吸效果都体现在叶高中部流场,端部的抽吸量对叶栅角区的回流有一定的抑制效果.抽吸量沿展向的分布规律受叶栅流道和叶片内腔流场的共同作用,因此应根据三维高负荷扩压叶栅流场的具体特性对吸力面抽吸槽/孔进行细化设计.   相似文献   
282.
涡轮间隙泄漏涡破碎对损失的影响   总被引:4,自引:0,他引:4  
高杰  郑群  许天帮  张正一 《航空学报》2014,35(5):1257-1264
采用数值方法联合标准k-ω两方程湍流模型求解雷诺平均Navier-Stokes方程组,研究了不同间隙高度下GE-E3(Energy Efficient Engine)涡轮第一级动叶顶部间隙泄漏涡(TLV)的破碎特性及其对泄漏损失的影响。首先描述了泄漏涡的破碎现象,并对其动力学特性进行了理论分析,接着研究了间隙高度对泄漏涡结构及破碎特性的影响,最后对泄漏涡破碎与损失的关系进行了探讨。研究结果表明:涡轮叶顶间隙泄漏涡具有不稳定特性,当泄漏涡具有足够的强度可以克服通道涡卷吸形成完整涡结构时,在叶片后半部分逆压区发生了涡破碎现象,带来了额外的涡破碎损失;间隙高度对泄漏涡破碎位置的影响比较明显,在大间隙下泄漏涡趋于相对稳定;叶顶泄漏流产生的掺混损失以泄漏涡的破碎为标志分为两个阶段,大量的掺混损失发生在泄漏涡破碎之后,这也是叶顶泄漏流产生损失的主要部分。  相似文献   
283.
为确定机场终端区最大容量保障能力,即极限容量,从终端区运行特点分析出发,综合考虑进离场航线长度、飞行速度、管制间隔等因素,构建进离场网络流模型,并以跑道Pareto容量包络线作为约束,分析进离场航线网络与跑道的耦合关系,建立基于阻塞流的机场终端区极限容量评估模型。以杭州萧山机场终端区为例,验证了模型的可行性和准确性,并借助模型分析了不同流量控制策略下终端区容量包络线的变化趋势。研究表明,随着移交间隔变大,终端区容量包线有内移的趋势,进场容量由33架次/h逐步降为25架次/h。  相似文献   
284.
利用相似变换获得了楔状流层流边界层无量纲流函数的3阶非线性常微分方程,用Runge-Kutta法求解微分方程获得了不同楔形角楔状流层流边界层无量纲速度随相似变量的变化曲线;推导了亚声速和超声速楔状流层流边界层无量纲温度关于相似变量的2阶线性齐次和非齐次微分方程,获得了温度分布的通解,恒壁温条件下亚声速楔状流和绝热壁面条件下超声速楔状流层流边界层无量纲温度解析解及指数函数形式的拟合解.以楔形角为0为例利用相似变换研究了超声速条件下气体压缩性及黏度随温度变化等因素对层流边界层速度与温度的影响,得出不可压缩常物性与可压缩变物性条件下无量纲速度相对误差绝对值小于9.8%的结论.研究表明:Pr越大贴近壁面处无量纲温度变化越剧烈;超声速条件下壁温低于绝热壁温时黏性耗散作用可以使层流边界层气体温度从壁面到主流间出现先升高后降低的变化.   相似文献   
285.
为有效抑制涡轮转子叶尖泄漏并改善叶尖热负荷,采用数值模拟的方法,对5种叶尖肋条结构的高压涡轮带气膜冷却突肩叶片流场进行计算,评估了不同叶尖肋条结构的气热性能。结果表明:在叶尖增加肋条结构能够有效调控叶尖空腔涡、刮擦涡、肋后涡和冷气肾形涡的路径,从而起到减小叶尖高表面传热系数区,提高叶尖平均气膜冷却效率的作用,同时有效降低了叶片压力侧前缘进入的泄漏流量,使得总压损失系数下降。凹槽尾缘压力侧半肋条结构具有最佳的气热性能,对泄漏流的阻碍作用最好,与无肋条情况相比,其叶尖平均表面传热系数降低了20.1%;平均气膜冷却效率提升了24.3%。  相似文献   
286.
开展了刷式密封流动传热特性数值方法研究,分别建立了刷式密封多孔介质、稳态实体与瞬态流固热耦合求解模型,设计搭建了刷式密封泄漏流动特性实验装置,在实验验证数值方法准确性基础上,对比分析了3种数值方法的差异性,研究了刷式密封流动传热特性,揭示了刷式密封的封严与传热机理。研究结果表明:在研究工况下,刷式密封多孔介质、稳态实体、瞬态流固热耦合模型泄漏量计算值与实验值的对比误差分别为9.8%~17.1%、8.1%~10%、6.92%~9.01%。刷式密封多孔介质模型计算速度较快,但需通过实验修正孔隙率,湍流模型对稳态实体模型流动传热特性结果影响较大,瞬态流固热耦合模型考虑了流场、刷丝及摩擦热三者间相互耦合作用,计算精度较高,但所需计算时间较长;同一压比下刷丝束温度从上游至下游逐渐增加,刷丝束最高温度随压比的增加而增大。气流流经刷丝间隙形成的节流效应致使泄漏气流能量耗散是刷式密封封严的主要原因,泄漏气流与刷丝表面间的对流换热是刷式密封摩擦热耗散的主要形式。   相似文献   
287.
为控制涡轮叶栅中叶顶间隙泄漏流动和改善涡轮气动性能,将扫频式射流器(SJA)作为一种主动流动控制方法应用在涡轮叶栅的研究中。通过非定常数值计算,分析了SJA对涡轮叶栅叶顶间隙流动的作用过程以及作用机理,并且研究了不同工况下SJA对涡轮叶顶流场改善效果以及不同频率的SJA对叶顶流场的影响。结果表明:通过在涡轮叶栅上端壁增加单个SJA装置,可以有效地延迟上端壁的流动分离,其中最佳方案射流流量仅为进口总流量的0.35%,涡轮叶栅出口截面总压损失系数减少了11.48%。存在着最佳的频率284Hz,使SJA装置对流场的作用效果最佳,有效地改善了涡轮叶栅内的间隙流动。  相似文献   
288.
针对稠密光流在低纹理复杂度时精度较低的问题,提出了一种自适应纹理复杂度的稠密光流优化方法,以提升光流导航精度。根据三种不同大气条件下三种不同图像模糊程度的图像光流精度与纹理复杂度的统计图,推断稠密光流的精度与图像的纹理复杂度呈线性关系。通过建立图像纹理复杂度和稠密光流精度之间的直接联系,利用灰度共生矩阵的对比度参数评价图像纹理复杂度,采用最小二乘法拟合图像纹理复杂度和光流真值优化系数的函数关系,获得自适应纹理复杂度的稠密光流优化模型。基于该优化模型设计了仿真实验,实验结果表明,基于该模型可有效提升稠密光流在低纹理复杂度时的计算精度。  相似文献   
289.
马楠  路成 《航空工程进展》2020,11(4):540-548
多个构件装配而成的复杂结构可靠性分析存在计算流程繁琐、计算效率低的问题。基于极值响应面 法、移动最小二乘法和分解协调的策略,提出分解协调移动极值响应面法(DCMERSM),对考虑流-热-固耦 合作用的航空发动机高压涡轮叶盘径向变形进行动态可靠性分析,通过对比直接模拟和分解协调极值响应面 法(DCERSM),对 DCMERSM 在 建 模 特 性 和 仿 真 性 能 方 面 的 有 效 性 和 适 用 性 进 行 验 证。 结 果 表 明: DCMERSM不仅适用于转子机械动态可靠性分析,同时还可以用于复杂机械多构件结构可靠性分析。  相似文献   
290.
针对极低供油压力工况开展实验研究,以考察气液两相流对挤压油膜阻尼器(SFD)油膜参数特性的影响。结果表明:当SFD入口气体体积分数小于0.9时,油膜阻尼随着入口气体体积分数的增加而减小,直至气体体积分数增大到0.9时,油膜阻尼是纯油状态时阻尼的60%;当气体体积分数大于0.9时,油膜阻尼大幅减小至几乎可以忽略不计。现有理论模型并不适用于极低供油压力工况。基于实验结果,找到了最符合SFD两相流动的等效黏度模型,其理论预测的油膜阻尼与不同供油压力下的实验数据吻合较好,为SFD两相流研究的模型选择提供了依据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号