全文获取类型
收费全文 | 934篇 |
免费 | 166篇 |
国内免费 | 113篇 |
专业分类
航空 | 446篇 |
航天技术 | 236篇 |
综合类 | 215篇 |
航天 | 316篇 |
出版年
2024年 | 39篇 |
2023年 | 151篇 |
2022年 | 171篇 |
2021年 | 138篇 |
2020年 | 91篇 |
2019年 | 72篇 |
2018年 | 19篇 |
2017年 | 16篇 |
2016年 | 20篇 |
2015年 | 17篇 |
2014年 | 15篇 |
2013年 | 27篇 |
2012年 | 24篇 |
2011年 | 39篇 |
2010年 | 43篇 |
2009年 | 60篇 |
2008年 | 50篇 |
2007年 | 35篇 |
2006年 | 46篇 |
2005年 | 31篇 |
2004年 | 25篇 |
2003年 | 22篇 |
2002年 | 13篇 |
2001年 | 10篇 |
2000年 | 10篇 |
1999年 | 6篇 |
1998年 | 7篇 |
1997年 | 6篇 |
1996年 | 2篇 |
1995年 | 2篇 |
1994年 | 2篇 |
1993年 | 3篇 |
1992年 | 1篇 |
排序方式: 共有1213条查询结果,搜索用时 15 毫秒
21.
跨域是行人重识别的重要应用场景,但是源域与目标域行人图像在光照条件、拍摄视角、成像背景与风格等方面的表观特征差异性是导致行人重识别模型泛化能力下降的关键因素。针对该问题,提出了基于多标签协同学习的跨域行人重识别方法。利用语义解析模型构造了基于语义对齐的多标签数据表示,以引导构建更关注行人前景区域的局部特征,达到语义对齐的目的,减少背景对跨域重识别的影响。基于行人图像全局特征和语义对齐后的行人局部特征,利用协同学习平均模型生成行人重识别模型的多标签表示,减少跨域场景下噪声硬标签的干扰。利用协同学习网络框架联合多标签的语义对齐模型,提高行人重识别模型的识别能力。实验结果表明:在Market-1501→DukeMTMC-reID、DukeMTMC-reID→Market-1501、Market-1501→MSMT17、DukeMTMC-reID→MSMT17跨域行人重识别数据集上,与NRMT方法相比,平均精度均值分别提高了8.3%、8.9%、7.6%、7.9%,多标签协同学习方法具有显著的优越性。 相似文献
22.
李勇 《中国民航飞行学院学报》2006,17(3):53-57
《大学英语课程教学要求》颁布以来,我国一些高校积极探索采用以建构主义学习理论为基础的大学英语网络教学模式,以适应学生朝个性化自主学习方向发展的需求并解决我国大学英语教学中的普遍问题。本文介绍了基于局域网和基于校园网的大学英语教学,探讨了网络英语教学中师生角色的定位。 相似文献
23.
24.
视觉跟踪中,高效鲁棒的特征表达是复杂环境下影响跟踪性能的重要因素。提出一种深度稀疏神经网络模型,在提取更加本质抽象特征的同时,避免了复杂费时的模型预训练过程。对单一正样本进行数据扩充,解决了在线跟踪时正负样本不平衡的问题,提高了模型稳定性。利用密集采样搜索算法,生成局部置信图,克服了采样粒子漂移现象。为进一步提高模型的鲁棒性,还分别提出了相应的模型参数更新和搜索区域更新策略。大量实验结果表明:与当前主流跟踪算法相比,该算法对于复杂环境下的跟踪问题具有良好的鲁棒性,有效地抑制了跟踪漂移,且具有较快的跟踪速率。 相似文献
25.
单声道歌声分离是指将单声道歌曲中的伴奏和歌声分离,在旋律提取、歌词识别、卡拉OK伴奏等方面有重要应用。针对当前时频谱图预测精度受限的问题,利用高分辨率网络具有并行结构及特征充分交互提高模型性能的优势,提出基于高分辨率网络的单声道歌声分离算法。设计并构建适合单声道歌声分离的高分辨率网络,输入歌曲的时频谱图到网络,得到预测的伴奏和歌声时频谱图。结合歌曲相位进行重构,得到伴奏和歌声的时域信号。实验表明,在公开数据集MIR-1K上,所提算法的SNR、SIR、SAR指标均优于当前代表性算法,提高了分离后伴奏和歌声的质量。 相似文献
26.
针对智能环境中活动模式的学习和挖掘花销大、难以实际操作等问题,提出了能够有效地将已有活动模式迁移到新环境的整体框架。迁移学习框架将活动模式的迁移过程分解为轨迹的迁移和触发持续时间的迁移,首先对已有活动模式中的活动轨迹以及触发持续时间模糊化;然后采用备选轨迹生成(ATSG)算法在新环境中生成备选轨迹集;最后采用相似度计算(SC)算法进行活动模式中的轨迹与备选轨迹间的匹配,利用活动轨迹映射(TM)算法和触发持续时间迁移(TDT)算法对活动信息进行迁移,从而在新环境中得到活动模式。理论分析和实验结果表明,相比于基于频繁模式挖掘得到活动模式的方法,本文方法大幅度地降低了得到活动模式所需的时间开销,同时,利用本文方法获取的活动模式取得了较好的活动识别效果。 相似文献
27.
为了提高压缩数据收集对多样化传感数据的适应能力,同时抑制环境噪声对数据收集精度的影响,提出了一种优化字典学习算法来构造压缩数据收集中的稀疏字典。理论分析表明在压缩数据收集中由环境噪声导致的数据收集误差和稀疏字典的自相干程度正相关。为此在字典学习的过程中引入了自相干惩罚项来抑制环境噪声对数据收集精度的影响。该惩罚项还能减少字典学习过程中对训练数据的过拟合,从而进一步提高了该算法的稀疏表示能力。实验表明,该算法的稀疏表示能力高于同类字典学习算法,而且能有效地抑制环境噪声对压缩数据收集精度的影响。 相似文献
28.
针对复杂环境下目标跟踪过程中由于遮挡、目标姿势及光照条件变化引起跟踪漂移的问题,提出一种基于多示例学习(MIL)框架的在线视觉目标跟踪算法。该算法针对多示例跟踪算法采用单一haar-like特征不能准确描述目标外观变化及在学习过程中对样本包中各正负样本示例采用相同权值,忽略不同正负样本示例在学习过程中对包的重要性不同的特点,采用多特征联合表示目标外观构造分类器,通过将多特征互补特性融入在线多示例学习过程中,利用多特征的互补属性建立准确的目标外观模型,克服在线多示例跟踪算法对目标外观变化描述不足的问题;同时,依据不同正负样本示例对样本包的重要程度进行权值分配,提高跟踪精度。实验结果表明,本文跟踪算法对场景光线剧烈变化、遮挡、尺度变化及平面旋转等干扰具有较强的跟踪鲁棒性,通过对不同视频序列进行测试,文中算法在5组测试视频序列上的平均中心位置误差远小于对比增量式学习跟踪,仅为10.14像素,其对比算法IVT、MIL和OAB的中心位置误差分别为17.99、20.29和33.64像素。 相似文献
29.
随着人工智能技术的发展,面向电力系统的运动目标追踪技术逐渐得到关注,现有方法虽有一定成效,但是大多基于固定摄像头的监控视频录制,不能灵活追踪运动目标,当运动目标离开摄像头视野时,存在运动目标丢失问题。为此,利用无人机设备,并基于深度学习和核相关滤波技术,提出了一个电力场景下基于无人机视觉的运动目标追踪方法(MTTS_UAV)。所提方法采用改进的目标追踪方法与目标检测方法相结合的方式来追踪运动目标隐患,并引入2种无人机飞行控制模块:启发式和数据驱动式,使得无人机的飞行速度和方向可以根据目标移动情况自适应地调节。在真实变电站的安全帽人员数据集上进行了大量实验,对所提方法的追踪效果进行评估,结果表明:所提方法在真实数据集上的平均像素误差(APE)和平均重叠率(AOR)分别可达到2.37和0.67,验证了方法的有效性。 相似文献
30.
自适应动态规划方法(ADP)是一种基于强化学习框架的智能控制方法,通过函数近似技术,最终得到动态规划问题的近似最优控制策略.本文对ADP方法在航空航天飞行器鲁棒控制的研究进行综述.首先,介绍了ADP方法基本结构框架与典型算法实现原理.进一步,对于ADP方法在高超声速飞行器系统,导航制导系统以及无人机系统在鲁棒控制中的相关研究进行介绍.最后,对未来航空航天飞行器领域ADP方法的发展前景进行了分析. 相似文献