首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   218篇
  免费   35篇
  国内免费   30篇
航空   200篇
航天技术   30篇
综合类   21篇
航天   32篇
  2023年   3篇
  2022年   9篇
  2021年   2篇
  2020年   8篇
  2019年   14篇
  2018年   4篇
  2017年   11篇
  2016年   6篇
  2015年   4篇
  2014年   8篇
  2013年   8篇
  2012年   15篇
  2011年   11篇
  2010年   8篇
  2009年   14篇
  2008年   10篇
  2007年   14篇
  2006年   19篇
  2005年   11篇
  2004年   8篇
  2003年   12篇
  2002年   14篇
  2001年   11篇
  2000年   10篇
  1999年   8篇
  1998年   4篇
  1997年   6篇
  1996年   6篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   4篇
  1989年   8篇
  1987年   2篇
  1986年   1篇
排序方式: 共有283条查询结果,搜索用时 15 毫秒
151.
Hydrogenated nanocrystalline silicon carbide (SIC) thin films were deposited on the single-crystal silicon substrate using the helicon wave plasma enhanced chemical vapor deposition (HW-PECVD) technique. The influences of magnetic field and hydrogen dilution ratio on the structures of SiC thin film were investigated with the atomic force microscopy (AFM), the Fourier transform infrared absorption (FTIR) and the transmission electron microscopy (TEM). The results indicate that the high plasma activity of the helicon wave mode proves to be a key factor to grow crystalline SiC thin films at a relative low substrate temperature. Also, the decrease in the grain sizes from the level of microcrystalline to that of nanocrystalline can be achieved by increasing the hydrogen dilution ratios. Transmission electron microscopy measurements reveal that the size of most nanocrystals in the film deposited under the higher hydrogen dilution ratios is smaller than the doubled Bohr radius of 3C-SiC (approximately 5.4 nm), and the light emission measurements also show a strong blue photoluminescence at the room temperature, which is considered to be caused by the quantum confinement effect of small-sized SiC nanocrystals.  相似文献   
152.
对比研究了高温合金铸型搅动细晶铸造和普通铸造叶轮的力学性能。研究结果表明,细晶铸造显著提高了K418B合金叶轮的室温和高温拉伸以及中温持久性能,并大幅度改善了合金的低周疲劳性能。细晶铸造K418B整体叶轮650℃的低周疲劳寿命为普通铸造的3倍。  相似文献   
153.
非晶晶化制备细晶TiAl基合金   总被引:2,自引:1,他引:2  
采用X ray衍射,DTA以及扫描电镜分析了Ti 50at%Al元素混合粉末高能球磨和热压过程中的结构演变和致密TiAl基合金的显微结构。结果表明,Ti 50at%Al粉末经过100h的高能球磨后转化为无序非晶相,Ti和Al元素粉末在机械合金化过程中的结构演变为:Ti Al→Ti(Al)过饱和固溶体(hcp)→非晶相。Ti 50at%Al非晶粉末在随后的热压过程中发生晶化,得到晶粒尺寸约为0.5μm的细晶TiAl基合金。Ti 50at%Al非晶的晶化过程为:非晶相→无序α相(hcp)→γ TiAl相( α2 Ti3Al相),其中α相是由无序非晶相向有序γ TiAl相转化过程中的介稳相。根据热压后γ TiAl相的不规则块状形貌推测α→γ TiAl转变的机制可能为块型转变。  相似文献   
154.
彭颖 《红旗技术》2002,(3):22-24
WDZ-1涡轮叶片采用无余量精铸取代有余量精铸工艺,解决了公司多年一直没有解决的冷热加工定位基准转换不协调的问题,并在试验中采用蜡模矫正模防止尺寸变形,调整孕育剂的含量,降低金属凝固时存在的温度梯度等方法,使叶片成品率大大提高。  相似文献   
155.
采用熔体旋甩法制备了快速凝固Al87Ni7Cu3Nd3金属玻璃薄带,并以连续加热和等温加热两种模式对非晶态薄带进行退火处理。采用差示扫描量热分析、X 射线衍射分析和高分辨率电镜分析等手段研究了非晶态薄带的晶化过程,对非晶态和退火态薄带的微观结构进行了细致检测,研究重点放在形成α Al纳米晶体颗粒的初始晶化行为,以便了解Al基纳米晶/非晶复合材料的结构特征。结果表明,快速凝固Al87Ni7Cu3Nd3合金薄带为单一的非晶态结构。非晶态薄带的晶化过程包括两个主要转变:α Al晶体从非晶基体中析出的初始晶化以及有Al3Ni,Al11Nd3和Al8Cu3Nd形成的第二次晶化过程。初始晶化的速率控制过程可能是铝自扩散,而第二次晶化过程则受控于溶质原子Ni,Nd和Cu的扩散。90~160℃等温退火薄带由α Al晶体相加残余非晶相的两相组织构成,随着等温温度的提高,初始晶化过程速率增大,而随着退火时间的延长,α Al晶体相的相对含量增大。110℃等温热暴露130min退火薄带的显微组织可以描述为,在非晶基体上均匀弥散分布着体积分数约20%的α Al晶体纳米(10nm)颗粒。  相似文献   
156.
对[001]取向单晶镍基合金恒载拉伸蠕变的组织形貌进行SEM观察和EDAX成分分析,研究了γ′相定向粗化特征及影响因素.结果表明,由于应力场和温度场的差别,蠕变样品不同位置处筏状γ′相粗化尺寸及特征不同,近断口处筏状γ′相扭曲且粗化加剧,随离断口距离增加,γ′相粗化程度减弱;在γ′相定向粗化的扩散场中,分配比值较小且相对稳定的元素W可成为其他元素的扩散障碍,使合金2中γ′相的形筏时间明显延长.  相似文献   
157.
设计研制了一对极圆感应同步器作为粗通道测量元件,从而使该测角系统体积大大减小,为感应同步器角度测量系统的小型化提供了一个有效途径。  相似文献   
158.
针对目标编群中的动态特性,研究了基于S-粗集副集的群分裂和群合并方法.以空间群为对象,用一个双向奇异集合来描述一个空间群,用特征函数来刻画目标迁入迁出空间群的程度,在此基础上给出了目标分群与合群的具体步骤.通过具体实例,证实了所给方法的可行性和有效性.  相似文献   
159.
本文借助模拟软件MeltFlow,模拟了GH4169合金电渣重熔凝固过程参数的变化,分析了电流变化对凝固过程参数的影响。模拟结果表明:凝固过程参数随电流的增大逐渐减小,且电流为4kA后基本不产生变化;凝固过程参数沿重熔锭中心至边缘随冷却速率增大逐渐减小;局部凝固时间、二次枝晶间距、Rayleigh数变化趋势一致,在判断凝固组织优劣方面是等同的;且电流增大到一定程度后,凝固过程参数与电流无关;计算模拟结果与实验结果吻合良好,能够预测不同工艺条件下缺陷的产生及程度,能够设计和优化现有的工艺并改进钢锭质量。  相似文献   
160.
李焕喜  陈昌麒 《航空学报》1990,11(1):106-110
 <正> 一、引言 把铝合金厚板直接加工成整体构件,用作飞机大梁壁板等结构,是现代飞机设计和制造过程中的一项先进技木。我国目前也在开始进行这方面的研究。由于在整体构件上不可避免地要打孔、开槽或加工有其它形式的截面突变部位,材料实际所承受的应力应变状态比较复杂。为保证这类整体构件的安全可靠及最佳的使用性能,需要对厚板的断裂行为有所了解。因此,本文将在试验室条件下以LC4铝合金厚板在复杂应力应变状态下的断裂机制进行考察。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号