首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2515篇
  免费   768篇
  国内免费   185篇
航空   1598篇
航天技术   497篇
综合类   191篇
航天   1182篇
  2024年   31篇
  2023年   125篇
  2022年   135篇
  2021年   159篇
  2020年   132篇
  2019年   110篇
  2018年   98篇
  2017年   105篇
  2016年   100篇
  2015年   95篇
  2014年   108篇
  2013年   102篇
  2012年   144篇
  2011年   130篇
  2010年   125篇
  2009年   119篇
  2008年   137篇
  2007年   105篇
  2006年   104篇
  2005年   112篇
  2004年   113篇
  2003年   125篇
  2002年   74篇
  2001年   81篇
  2000年   77篇
  1999年   88篇
  1998年   81篇
  1997年   93篇
  1996年   70篇
  1995年   58篇
  1994年   40篇
  1993年   34篇
  1992年   46篇
  1991年   46篇
  1990年   42篇
  1989年   48篇
  1988年   35篇
  1987年   25篇
  1986年   4篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有3468条查询结果,搜索用时 93 毫秒
861.
外加磁场对脉冲等离子体推力器性能的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
谭胜  吴建军  陈鑫  张宇  聂侥  李健  欧阳 《推进技术》2019,40(5):1177-1200
为了研究外加磁场对PPT性能的影响,建立了PPT带外加磁场的机电模型,并用三种不同放电能量水平的PPT验证了该模型的可靠性。利用该模型研究了外加磁场强度、模式、位置以及长度对PPT性能的影响。结果表明,对于尾部馈送型PPT,当外加磁场增加时,PPT性能先增加后减小,存在最优的外加磁场强度。对于LES-6 PPT和LES-8/9 PPT,外加磁场从极板的最左端开始施加效果最好;当外加磁场强度分别为0.25T,0.50T,0.75T,1.00T时,这两种PPT对应的最适合施加磁场长度分别是1.3mm,1.8mm,2.1mm,2.3mm和1.6mm,2.8mm,3.4mm,3.7mm。对于TMU PPT,外加磁场从极板的最右端开始施加效果最好,但是施加磁场长度应该根据具体实验结果并结合仿真计算来决定。  相似文献   
862.
圆柱形阳极层霍尔推力器内轮辐效应的实验研究   总被引:2,自引:2,他引:0       下载免费PDF全文
《推进技术》2019,40(7):1676-1680
为了研究圆柱形阳极层霍尔推力器内关于电子反常输运的轮辐效应(Rotating Spoke),分别采用高速相机和静电探针来捕捉圆柱形阳极层霍尔推力器内的轮辐效应图像和等离子体震荡频率。结果表明:在放电电压350V,放电电流3.5A,阳极上表面处的磁场强度为125Gs,工作气压为2×10-2Pa时,由测得轮辐效应的放电图像和波形可知,轮辐效应的频率为10kHz~12.5kHz。当磁场强度增加到205Gs,放电电流增加到4A时,轮辐效应的频率增加到25kHz,并且轮辐效应出现分裂和合并现象。此研究结果表明,圆柱形阳极层霍尔推力器内不仅存在轮辐效应现象以及角向电场,而且不同的工作参数会有不同的轮辐效应模式和频率。  相似文献   
863.
大功率霍尔电推进研究现状与关键技术   总被引:4,自引:2,他引:2       下载免费PDF全文
综述了大功率霍尔电推进技术的国内外研究现状,并结合未来空间任务需求,指出了大功率霍尔电推进技术的发展趋势。根据大功率霍尔电推进的技术特点,从基本理论和工程实现的角度,指出了大功率下需要攻克的关键技术,主要包括:较高等离子体密度带来的离子热能化和溅射腐蚀增强问题、大电流动态感应磁场干扰问题、严重的热负荷问题、大结构尺寸问题、大发射电流阴极、变工质放电、阴极中置以及地面试验问题等,并分析了相应关键技术的解决途径和技术方向。  相似文献   
864.
针对某型超精密机床液体静压导轨温度控制进行深入研究,提出多种不同的温度控制方法,并应用ANSYS仿真软件分别对液体静压导轨热变形进行了仿真,得出了不同温度控制方法下导轨的热变形大小。仿真结果显示,针对不同使用环境,通过不同的温度控制方法,对液体静压导轨进行热变形控制,从而满足超精密机床的使用要求,提高超精密机床的加工精度。。  相似文献   
865.
大功率离子推力器屏栅电源拓扑技术进展与展望   总被引:2,自引:1,他引:1  
《航天器工程》2017,(4):101-108
将离子推力器电源处理单元(PPU)的屏栅电源拓扑作为研究对象,从电推进发展现状及趋势出发,介绍了国内外的研究进展和应用情况。主要就目前屏栅电源所用到的双全桥并联拓扑、全桥谐振变换器、推挽变换器组成的组合变换器拓扑和全桥软开关拓扑进行论证分析,归纳了各屏栅电源拓扑的技术特点,最后结合我国今后PPU屏栅电源的发展需求,对屏栅电源新技术、新拓扑和功率量级等3方面作出展望,可为今后研制超大功率PPU屏栅电源提供研究方向与技术参考。  相似文献   
866.
激光烧蚀微推力器技术是激光推进技术最有可能率先实现工程应用的技术研究方向。作为一种新型的空间推进领域电推进推力器技术,以其系统集成度较高、电功耗较低、冲量元精准等优势特性,在推进性能和系统集成等方面形成鲜明的特色,对于多种空间推进任务具备潜在的应用价值。以激光烧蚀微推力器发展历程为背景,总结提炼当前推力器技术发展趋势,提出了激光烧蚀微推力器目前最具研究价值的两种工作模式,分别对高低比冲两种不同工作模式进行了性能分析和比对,对激光烧蚀微推力器应用前景进行了展望,最后给出了进一步研究的建议。  相似文献   
867.
为确保液体火箭发动机离心泵叶轮(离心轮)安全可靠工作,提出了基于强度的最大"正"等效应力法和基于刚度的双切线法两种失效判别准则以进行离心轮极限转速分析,并开展了离心轮超速试验进行验证。结果表明:最大"正"等效应力法准确地预测了离心轮破裂起始位置和破坏形式,误差低于15%;双切线法预测的屈服转速与试验结果符合较好,误差低于5%。对于塑性较好的离心轮结构,采用屈服转速替代破裂转速进行极限转速设计分析更利于实现低成本、高可靠性的设计目标。  相似文献   
868.
10cm离子推力器放电室性能优化研究   总被引:2,自引:2,他引:0       下载免费PDF全文
要实现离子推力器较高的效率和比冲等综合性能指标,优化的放电室性能是其首要的前提条件。为了获得10cm离子推力器优化的放电室性能,在放电室初始设计方案基础上,通过对工作参数和结构参数的不同组合试验,开展了性能优化研究,采用的主要手段是关键特征尺寸调节、流率调节和磁场参数的调节。试验获得了不同参数组合的性能变化趋势,得出了优化的放电室结构参数和工作参数。优化后的离子推力器综合性能试验结果表明,在推力15.6m N、比冲3100s的设计工况下放电损耗约为227W/A,放电室工质利用率为91%。  相似文献   
869.
多喷管液体火箭动力系统尾焰冲击特性研究   总被引:3,自引:2,他引:1       下载免费PDF全文
为深入研究多喷管液体火箭动力系统尾焰冲击特性,以由多喷管液体火箭动力系统构成的发射平台为研究对象,采用三维N-S方程描述尾焰冲击流动过程,采用Realizable k-ε湍流模型封闭流动方程组,并运用压力的隐式算子分割(PISO)算法进行求解,得到了火箭动力系统尾焰对不同导流面导流槽的冲击流场参数。结果表明:导流面上受冲击影响最大的是沿喷管轴线方向的正冲击区域,且助推器尾焰对导流面的冲击效应相比于芯级更加强烈。锥形导流面对多喷管动力系统尾焰具有很好的引射和导流作用,相比于楔形导流面更能降低尾焰的冲击影响,但会在流场中形成漩涡并卷吸高温燃气,可能对发射系统造成破坏,需要增加相应的热防护措施。  相似文献   
870.
王健  阮文俊  王浩  张磊 《推进技术》2017,38(8):1726-1731
为了研究在低温寒冷工作条件下单兵火箭发射过程中声、光、焰、烟等缺陷的抑制方法,设计了将防冻液柱放置在发射筒尾管中作为平衡体的实验方案。实验中采用高速摄影系统观察了超声速燃气射流驱动防冻液柱在大气环境中的扩散过程,并利用压电式传感器测得了发射筒周围的冲击波超压值,对比了燃气驱动防冻液柱和液体水柱两种状态下射流流场的测试结果。实验结果表明,由于液体柱的阻碍作用,射流流场发展初期的径向发展速度相比于轴向发展速度更快。随着射流流场的逐渐发展,出现了Kelvin-Helmholtz不稳定效应。以防冻液柱为平衡体时,弹丸所获初速更高,由于防冻液气化潜热较高,相比于液体水气化时吸收了更多的燃气能量,降低了射流特征参数。通过与以液体水柱为平衡体的射流流场对比,发现以防冻液柱为平衡体时整个测点区域的噪声声压级峰值均有所降低,声压级降低了1.5 ~ 3.5dB,验证了此方案的可行性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号