首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1281篇
  免费   290篇
  国内免费   254篇
航空   1091篇
航天技术   214篇
综合类   211篇
航天   309篇
  2024年   20篇
  2023年   50篇
  2022年   79篇
  2021年   77篇
  2020年   67篇
  2019年   81篇
  2018年   53篇
  2017年   70篇
  2016年   65篇
  2015年   68篇
  2014年   68篇
  2013年   82篇
  2012年   85篇
  2011年   85篇
  2010年   83篇
  2009年   83篇
  2008年   70篇
  2007年   82篇
  2006年   59篇
  2005年   62篇
  2004年   39篇
  2003年   37篇
  2002年   29篇
  2001年   35篇
  2000年   33篇
  1999年   22篇
  1998年   24篇
  1997年   35篇
  1996年   22篇
  1995年   17篇
  1994年   21篇
  1993年   14篇
  1992年   35篇
  1991年   24篇
  1990年   23篇
  1989年   6篇
  1988年   11篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
排序方式: 共有1825条查询结果,搜索用时 15 毫秒
81.
航天事业发展趋势和未来需求指明,航天测控系统应该向以自主运行能力为代表特征的智能化方向发展。基于此,提出了标准化的支持与服务、映射现实的体系架构、实时响应的运行模式、服务化的基础平台等4项关键技术。通过将测控系统和卫星系统之间的接口、测控系统和用户系统之间的接口标准化,从而在此基础上建立最优化的操作逻辑。通过在计算机中映射现实系统的思想方法,从而产生稳定性和灵活性兼备的、支持自主运行的,并具有良好进化性能的系统架构。通过实时响应的运行模式可以很好满足全时段和突发性等具有挑战性的测控服务需求。通过大数据和云计算技术构建基础计算服务平台实现基础层与业务层分离,有利于整个系统的持续改进,提高服务质量改善的速度,建立竞争力优势。由此说明,在当前技术条件下实现自主运行的航天测控系统是可行的。  相似文献   
82.
孙冰  宋佳文 《推进技术》2016,37(7):1328-1333
为了预测再生冷却液体火箭发动机推力室壁的应变分布,研究内壁失效机理,使用有限元法对推力室壁进行了三维瞬态热分析,在瞬态热分析结果的基础上采用多线性随动硬化模型对推力室壁进行了三维弹塑性结构分析。计算结果表明,多线性随动硬化模型能够准确地模拟推力室内壁材料的应力-应变关系;内壁温度达到稳态的时间相比外壁要短得多,在预冷、试车和后冷开始约0.1s后内壁温度便已经接近稳态;瞬态加载三维热结构分析能够确定推力室内壁最先失效的危险点的位置在喉部上游冷却通道中心;推力室壁瞬态加载三维热结构分析得到的最大残余应变比稳态加载大15.7%。  相似文献   
83.
高超声速导弹等离子体合成射流控制数值研究   总被引:2,自引:1,他引:2  
杨瑞  罗振兵  夏智勋  王林  周岩 《航空学报》2016,37(6):1722-1732
快响应控制技术已成为高超声速飞行器发展的关键技术之一,具有极快响应、零质量特性的等离子体合成射流(PSJ)已在超声速流动控制方面初步显示出优异的控制能力,极有潜力应用于高超声速飞行器的快响应控制。基于等离子体合成射流的快响应特性,提出了高超声速飞行器等离子体合成射流快响应控制技术,并通过建立简化的高超声速导弹流场控制模型,对等离子体合成射流控制高超声速导弹进行数值研究。首先,理论分析了高超声速导弹流场的典型结构特征,导弹流场中存在3个特征流场结构。在此基础上,在导弹3个特征位置前面安装等离子体合成射流激励器,研究等离子体合成射流对高超声速流场结构的控制作用,分析由此导致的导弹表面压力分布、升阻特性以及俯仰力矩特性变化。数值仿真结果表明:等离子体合成射流对高超声速导弹外流场中膨胀波和斜激波都具有控制作用,使得波的强度均变弱,且对斜激波的控制效果更为显著;导弹流场结构及气动特性变化具有很强的射流跟随性,射流作用下的导弹流场变化响应时间非常短,仅为0.2 ms;通过合理布置等离子合成射流激励器的位置,可以使得导弹表面压力分布快速改变,从而实现高超声速导弹姿态的快速控制。  相似文献   
84.
杨智春  刘丽媛  王晓晨 《航空学报》2016,37(12):3578-3587
高超声速飞行器壁板在非定常气动力、热载荷和噪声载荷构成的多物理场联合作用下,将表现出复杂的非线性气动弹性声振响应,特别是在颤振临界动压附近,受热载荷以及声载荷作用,壁板表现出复杂的跳变运动。基于von Karman大变形板理论,建立了热-声载荷和气动力共同作用下的壁板运动方程,分析了超声速气流中受热壁板的屈曲变形及热屈曲稳定性,借助势阱概念初步分析了壁板跳变运动产生的机理。通过定义“穿零频次”给出了跳变运动定量的分类方法,并计算得到不同温升和动压情况下,壁板发生跳变运动所对应的临界声压级。结果表明:在颤振临界动压之前,随着动压的增加,受热壁板势阱的深度先增大后减小,且受热壁板的势阱深度随着温升的增加而增大。  相似文献   
85.
陈杰 《太空探索》2013,(1):45-49
近年来,美国快速响应空间系统(ORS)取得了长足发展,先后研制、发射并开展了3颗战术小卫星的在轨演示验证。2011年6月,第一颗快速响应空间系统业务卫星发射升空并已开始业务运行。美国国防部在2011年颁布的《国家安全空间战略》中提出要继续开发ORS能力并使之更加成熟。但在2012年,ORS的发展遭遇波折,美国国防部2013财年军事航天预算申请中提出将关闭2007年成立的快速空间响应办公室。  相似文献   
86.
采用响应面法优化牡蛎的复合酶水解工艺.结果表明:中性蛋白酶与风味蛋白酶按照2∶1复配,在水解温度40℃,水解时间5.68h,水解pH值7.0条件下,牡蛎蛋白水解度可达到32.24%,水解效果最优.验证试验表明,实际蛋白质的水解度与模型预测值相近,因此采用响应面法优化牡蛎酶解工艺,准确可靠.  相似文献   
87.
喷油器瞬态两相流动的建模方法   总被引:1,自引:0,他引:1  
为了研究柴油机喷油器内部的气穴现象,采用一种新的方法建模并进行瞬态两相流动的数值模拟. 首先求解针阀开启时刻的稳态流场,然后导入自编的程序进行瞬态流场的计算. 自编程序是基于Fluent提供的用户自定义函数,用于控制模型边界条件,分析针阀受力情况和计算其运动速度. 初始计算条件来自稳态流场,每一步瞬态计算都依赖之前流场的计算结果. 这种建模方法保证了数值模拟的连贯性和真实性,确定喷油器初始条件就可以完整地计算喷油过程,得到每一时刻喷油器内部的压力分布和两相流分布等数据. 研究结果表明,这种新的建模方法是可行和有效的,其数值模拟结果和实验结果相吻合,并能揭示出喷油器喷嘴入口处气穴现象的产生、发展和消失过程,是进一步深入开展柴油喷油系统两相流动特性研究的一种新的途径.  相似文献   
88.
模拟器件的单粒子瞬态脉冲效应的研究, 成为近来国际上单粒子效应研究的热点. 针对中国生产的运算放大器SF3503, 利用脉冲激光单粒子效应测试装置, 试验研究了SF3503工作于反相放大器与电压比较器模式SET效应的特征与规律. 获取了器件的敏感节点分布、LET阈值和SET脉冲波形的特征参数, 其中器件的敏感节点均分布在输入级与放大级, LET阈值不大于1.2 MeV•cm2•mg-1, 电压比较器产生的最大SET脉冲的幅度达27 V、脉冲宽度为51μs. 试验表明SF3503对SET效应极其敏感, 在不采取任何措施的情况下, 在空间任务中直接使用, 会严重影响系统的可靠性.   相似文献   
89.
涡轮轴断裂条件下空气系统强瞬变过程分析   总被引:6,自引:2,他引:6  
建立了针对空气系统强瞬变过程的控制方程及模块化仿真模型,该模型包括构成瞬态空气系统网络的4类基本元件:容腔元件、节点元件、管道元件和节流元件。上述基本元件及其组合单元的仿真结果与公开的文献数据能够较好的吻合,证明该模型能够模拟容积效应、惯性力作用占主导的强瞬变空气系统演化。在此基础上,仿真分析了某型航空发动机高压涡轮(HPT)轴断裂失效条件下的空气系统强瞬变过程。结果表明,涡轮轴的断裂失效能够引起空气系统内部复杂响应过程,并能导致涡轮盘所受的轴向力反向。该瞬态空气系统模型成功模拟了气流参数毫秒时间量级的动态响应,为深入研究航空发动机内部复杂空气系统的瞬变机理提供了有效的技术手段。   相似文献   
90.
高温条件下结构的本构方程和承载能力都随时间变化,传统的结构可靠性模型在分析这种时变结构可靠性问题时效率较低.提出一种可用于高温结构可靠性分析的热响应与响应量阈值均随时间变化的时变响应面法.首先,通过引入结构各基本变量与时间的交叉二次函数并结合Box-Behnken试验设计建立结构热响应量的时变模型;进而,以温度为中间变量,建立结构响应量阈值与时间的函数关系,据此得到用随机过程表示的时变极限状态函数.具体给出了基本变量服从正态分布情形下的结构时变可靠度计算方法.算例分析表明该方法切实可行,能够在保证计算精度的基础上大幅提高计算效率.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号