首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1461篇
  免费   233篇
  国内免费   146篇
航空   932篇
航天技术   320篇
综合类   195篇
航天   393篇
  2024年   29篇
  2023年   94篇
  2022年   87篇
  2021年   100篇
  2020年   83篇
  2019年   73篇
  2018年   44篇
  2017年   42篇
  2016年   67篇
  2015年   51篇
  2014年   68篇
  2013年   53篇
  2012年   67篇
  2011年   62篇
  2010年   83篇
  2009年   82篇
  2008年   95篇
  2007年   92篇
  2006年   63篇
  2005年   85篇
  2004年   52篇
  2003年   55篇
  2002年   32篇
  2001年   42篇
  2000年   36篇
  1999年   19篇
  1998年   33篇
  1997年   31篇
  1996年   32篇
  1995年   15篇
  1994年   12篇
  1993年   11篇
  1992年   11篇
  1991年   9篇
  1990年   7篇
  1989年   11篇
  1988年   5篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有1840条查询结果,搜索用时 31 毫秒
921.
武器装备的快速性设计和优化是提升自主创新的重要手段.导弹结构快速设计系统是针对导弹结构设计复杂性和反复性的特点,基于KBE的理念,借助UG平台,融入设计规则和经验教训的设计平台.通过该平台的开发,实现了导弹结构的自动式建模和自导式建模,以及对模型的分析计算,生成可脱离该系统进行单独修改设计的导弹各舱段的知识特征模型,从而满足了快速性和重复优化设计的需要,大大提高了设计的效率.  相似文献   
922.
基于特征的航空钣金零件快速设计方法研究与应用   总被引:1,自引:0,他引:1  
在航空钣金零件设计知识没有得到管理和应用的情形下,钣金零件设计需要查询大量的纸质文件,导致建模时间长,重复劳动多,设计效率低下,容易产生人因错误.由于设计人员水平和习惯差异,航空钣金零件建模过程和方法不统一,模型质量参差不齐,难以实现规范化建模和最优化设计,也给后续工艺设计及加工制造带来不便.本文使用CATIA二次开发技术、基于知识工程的设计技术和CATIA航空钣金设计模块接口配置技术等,在总结提炼钣金特征设计知识、建立标准规范库和特征模板库的基础上,构建了基于特征的航空钣金零件快速设计系统,实现了航空钣金零件的快速规范化建模和最优化设计.系统已在型号研制中得到验证和使用,效果明显,大大提高了航空钣金零件的设计效率和质量.  相似文献   
923.
基于Hertz接触理论,以内圈滚道表面存在局部剥落的球轴承为研究对象,对球轴承局部剥落故障所激起的非线性激励机理进行研究,分析球轴承双冲击现象激励机理。将滚动体与球轴承内外圈非线性接触特性纳入考虑,提出时变位移激励与时变接触力激励相耦合的球轴承局部剥落双冲击现象动力学模型。研究中采用Runge-Kutta数值积分法求解该二阶非线性动力学微分方程,并对故障球轴承仿真信号进行双冲击时间间隔特征验证。在不同转速和内圈剥落尺寸条件下开展仿真与实验研究,通过仿真和实测信号的双冲击时间间隔与理论双冲击时间间隔对比分析,仿真信号的双冲击时间间隔与理论值对比的误差结果皆小于2%,与实测信号的双冲击时间间隔值对比的误差结果皆小于12%;同时,仿真信号与实测信号具有很好的相似性,从而验证了该动力学模型的有效性。   相似文献   
924.
针对一种可极大提升涵道比的气驱附加涵道风扇推进动力系统开展研究,采用数值模拟手段重点分析了其核心部件叶尖涡轮的流动特征和工作机理,为后续发展这种大涵道比推进动力奠定理论基础。研究表明:叶尖涡轮实质上是具有低稠度低展弦比特征的轴流涡轮,稠度可低至0.6,展弦比可低至0.4。低展弦比造成的叶尖涡轮间隙泄漏损失增大为原来的2倍,泄漏涡径向侵入叶根,主流流动损失加剧,大大降低了低稠度涡轮能量提取效果;稠度降低会使得喉道位置迁移,导致气流偏转和膨胀加速能力大幅下降;基于这一结构,提出有效提能区和能量提取率来阐明其做功机理并表征低稠度叶尖涡轮的出功能力。   相似文献   
925.
针对目前自适应时频分析方法在模拟电路故障诊断方向理论研究尚不完善、缺乏实践验证等方面的问题,采用改进LCD算法及分维理论相结合的方法进行理论研究及实物验证。对被测点所采集数据进行预处理后直接进行LCD分解并计算各分量分维数作为故障特征,输入神经网络进行故障诊断。仿真结果验证了该方法的有效性;实物验证成功分类了2类电路状态,并阐明了分类结果杂散点较多的原因。  相似文献   
926.
地面粗糙度是大气边界层中反映下垫面形态的重要指标,也是影响近地风场特征的重要因素。为研究地面粗糙度对下击暴流风剖面特性的影响,基于计算流体力学方法建立了下击暴流三维足尺模型,通过实验对数值模型进行了验证。通过调整粗糙元高度及分布密度来模拟自然界地面不同的粗糙类别,数值模拟了具有不同地面粗糙长度的下击暴流近地风场。结果表明:在距离风暴中心较近的位置(r≤1.0Djet),地面粗糙度对下击暴流风场的影响并不明显,各径向位置的最大风速值和最大风速所在高度都基本不受地面粗糙度影响;在下击暴流冲击地面后沿径向发展的过程中,经过粗糙的地面,产生能量耗散效应,地面粗糙度对于下击暴流风剖面特征的影响逐渐显著,不同地貌下的竖直风剖面产生较大差异;在近地面高度,地面粗糙度对下击暴流径向风剖面影响显著且影响范围大,沿径向发展的方向下击暴流的风速随着地面粗糙长度的增加而下降更迅速;随着距离地面高度增加,地面粗糙度对径向风剖面的影响主要体现在远离风暴中心的区域。尽管下击暴流形成后沿径向扩散过程存在强度自然衰减过程,但在距离风暴中心较远的径向位置,当遭遇强下击暴流时,下击暴流引起的近地面强风仍然具有很大的威胁和破坏性,因此地面粗糙度对下击暴流风剖面特性的影响不能忽略,需要在风剖面模型中考虑地面粗糙度的修正。  相似文献   
927.
基于前体激波的内转式进气道一体化设计   总被引:1,自引:0,他引:1  
乔文友  余安远  杨大伟  乐嘉陵 《航空学报》2018,39(10):122078-122078
在腹部进气的乘波前体/内转式进气道的一体化设计中,为使进气道捕获截面和唇口型线的形状与飞行器前体激波较好匹配,提出一种基于前体激波形状的一体化设计方法。首先,计算乘波前体流场并提取前体激波形状;其次,将进气道捕获型线(ICC)投影在前体激波曲面上,得到可全流量捕获的进气道唇口型线(IFCC);再次,给定进气道基本流场的中心体轴线位置,确定基本流场的入射激波形状;然后,给定基本流场的沿程压缩规律,应用特征线法确定进气道的基本流场;最后,将ICC顺来流方向投影至进气道入射激波曲面上,经流线追踪和黏性修正得到最终的进气道型面。数值模拟结果表明,对于典型飞行器前体,在设计马赫数为7.0的条件下,应用该方法得到的进气道流量捕获系数达0.976,隔离段出口截面的马赫数、压比和总压恢复系数分别为3.17、38.9和0.487。  相似文献   
928.
张帅  雷晓波  张霞妹  张强波  文敏 《推进技术》2020,41(10):2325-2331
为了检测识别航空发动机工作过程中的风扇外物撞击事件,采用非接触叶尖振动测量系统对风扇叶片叶尖振动位移进行实时采集与检测。通过风扇叶片非接触叶尖振动位移数据统计分析,发现叶尖振动位移服从正态分布,并采用Epps-Pulley假设检验证明。设计了基于统计特征的风扇叶片外物撞击叶尖振动位移检测算法,采用该方法获取了风扇转子不同转速下外物撞击叶尖振动位移检测阈值。对风扇转子转速为3000r/min状态下,直径16mm、质量为2.9g的外物弹体撞击风扇叶片的振动位移数据进行分析,并采用高速摄像系统对该方法识别结果的可靠性进行验证。结果表明:基于统计特征的发动机风扇外物撞击检测方法,能够准确识别外物撞击风扇叶片事件及发生撞击的叶片编号。  相似文献   
929.
叶型结冰会改变叶型原有的气动外形,影响气动特性。采用 FENSAP-ICE软件对 NACA0012翼型的 结冰进行数值计算,并与试验结果进行对比验证;对压气机进口导叶叶型进行二维结冰计算,并对数值计算结 果进行流场分析。结果表明:明冰对叶型的气动性能影响大于毛冰,叶型气动特性的衰退主要受分离区中上分 离涡的影响,叶型前缘上翘的明冰引起叶型尾部分离区域面积增大,强烈的分离涡导致结冰后叶型压力损失 增大。  相似文献   
930.
一些航拍图像的尺寸较大,现有的特征点提取算法在对其处理时均要耗费大量的时间,针对这一问题,提出一种快速有效的特征点提取算法。首先构造原始图像的拉普拉斯金字塔,以获得图像的尺度信息,同时保留图像的方向信息;再使用非均匀多方向滤波器组将金字塔图像分解在不同方向上,在分解后的图像中提取局部极值点作为候选特征点集;采用特定的合并策略合并候选特征点最终得到特征点集,并根据方向滤波器组为特征点分配方向向量。试验结果表明,本文算法在基本保证提取到的特征点匹配率及正确率的前提下,有较高的效率。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号